logo

Recent Development for Sodium Metal Batteries

PDF Publication Title:

Recent Development for Sodium Metal Batteries ( recent-development-sodium-metal-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 022

Batteries 2022, 8, 157 22 of 25 48. Cheng, Y.; Yang, X.; Li, M.; Li, X.; Lu, X.; Wu, D.; Han, B.; Zhang, Q.; Zhu, Y.; Gu, M. Enabling Ultrastable Alkali Metal Anodes by Artificial Solid Electrolyte Interphase Fluorination. Nano Lett. 2022, 22, 4347–4353. [CrossRef] 49. Hu, X.F.; Matios, E.; Zhang, Y.W.; Wang, C.L.; Luo, J.M.; Li, W.Y. Deeply Cycled Sodium Metal Anodes at Low Temperature and in Lean Electrolyte Conditions. Angew. Chem. Int. Ed. 2021, 60, 5978–5983. [CrossRef] 50. Wang, Y.; Jiang, R.; Liu, Y.; Zheng, H.; Fang, W.; Liang, X.; Sun, Y.; Zhou, R.; Xiang, H. Enhanced Sodium Metal/Electrolyte Inter- face by a Localized High-Concentration Electrolyte for Sodium Metal Batteries: First-Principles Calculations and Experimental Studies. ACS Appl. Energy Mater. 2021, 4, 7376–7384. [CrossRef] 51. Fang, W.; Jiang, R.; Zheng, H.; Zheng, Y.; Sun, Y.; Liang, X.; Xiang, H.F.; Feng, Y.Z.; Yu, Y. Stable sodium metal anode enhanced by advanced electrolytes with SbF3 additive. Rare Met. 2021, 40, 433–439. [CrossRef] 52. Matios, E.; Wang, H.; Luo, J.; Zhang, Y.; Wang, C.; Lu, X.; Hu, X.; Xu, Y.; Li, W. Reactivity-guided formulation of composite solid polymer electrolytes for superior sodium metal batteries. J. Mater. Chem. A 2021, 9, 18632–18643. [CrossRef] 53. Oh, J.A.S.; Wang, Y.M.; Zeng, Q.B.; Sun, J.G.; Sun, Q.M.; Goh, M.; Chua, B.; Zeng, K.Y.; Lu, L. Intrinsic low sodium/NASICON interfacial resistance paving the way for room temperature sodium-metal battery. J. Colloid Interf. Sci. 2021, 601, 418–426. [CrossRef] [PubMed] 54. Xu, P.; Li, X.; Yan, M.-Y.; Ni, H.-B.; Huang, H.-H.; Lin, X.-D.; Liu, X.-Y.; Fan, J.-M.; Zheng, M.-S.; Yuan, R.-M. A highly reversible sodium metal anode by mitigating electrodeposition overpotential. J. Mater. Chem. A 2021, 9, 22892–22900. [CrossRef] 55. Zheng, X.; Huang, L.; Ye, X.; Zhang, J.; Min, F.; Luo, W.; Huang, Y. Critical effects of electrolyte recipes for Li and Na metal batteries. Chem-US 2021, 7, 2312–2346. [CrossRef] 56. Fan, L.; Li, X. Recent advances in effective protection of sodium metal anode. Nano Energy 2018, 53, 630–642. [CrossRef] 57. Matios, E.; Wang, H.; Wang, C.; Li, W. Enabling safe sodium metal batteries by solid electrolyte interphase engineering: A review. Ind. Eng. Chem. Res. 2019, 58, 9758–9780. [CrossRef] 58. Oh, J.A.S.; He, L.; Chua, B.; Zeng, K.; Lu, L. Inorganic sodium solid-state electrolyte and interface with sodium metal for room-temperature metal solid-state batteries. Energy Storage Mater. 2021, 34, 28–44. [CrossRef] 59. Lee, B.; Paek, E.; Mitlin, D.; Lee, S.W. Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. Chem. Rev. 2019, 119, 5416–5460. [CrossRef] 60. Liu, W.; Liu, P.; Mitlin, D. Review of Emerging Concepts in SEI Analysis and Artificial SEI Membranes for Lithium, Sodium, and Potassium Metal Battery Anodes. Adv. Energy Mater. 2020, 10, 2002297. [CrossRef] 61. Sun, B.; Xiong, P.; Maitra, U.; Langsdorf, D.; Yan, K.; Wang, C.; Janek, J.; Schroder, D.; Wang, G. Design Strategies to Enable the Efficient Use of Sodium Metal Anodes in High-Energy Batteries. Adv. Mater. 2020, 32, e1903891. [CrossRef] [PubMed] 62. Seh, Z.W.; Sun, J.; Sun, Y.; Cui, Y. A Highly Reversible Room-Temperature Sodium Metal Anode. ACS Cent. Sci. 2015, 1, 449–455. [CrossRef] [PubMed] 63. Zhu, M.; Zhang, Y.; Yu, F.; Huang, Z.; Zhang, Y.; Li, L.; Wang, G.; Wen, L.; Liu, H.K.; Dou, S.X.; et al. Stable Sodium Metal Anode Enabled by an Interface Protection Layer Rich in Organic Sulfide Salt. Nano Lett. 2021, 21, 619–627. [CrossRef] [PubMed] 64. Wang, H.; Yu, Z.; Kong, X.; Kim, S.C.; Boyle, D.T.; Qin, J.; Bao, Z.; Cui, Y. Liquid electrolyte: The nexus of practical lithium metal batteries. Joule 2022, 6, 588–616. [CrossRef] 65. Yoon, H.; Zhu, H.J.; Hervault, A.; Armand, M.; MacFarlane, D.R.; Forsyth, M. Physicochemical properties of N-propyl-N- methylpyrrolidinium bis(fluorosulfonyl)imide for sodium metal battery applications. Phys. Chem. Chem. Phys. 2014, 16, 12350–12355. [CrossRef] 66. Shi, Q.W.; Zhong, Y.R.; Wu, M.; Wang, H.Z.; Wang, H.L. High-Performance Sodium Metal Anodes Enabled by a Bifunctional Potassium Salt. Angew. Chem. Int. Ed. 2018, 57, 9069–9072. [CrossRef] 67. Cao, R.G.; Mishra, K.; Li, X.L.; Qian, J.F.; Engelhard, M.H.; Bowden, M.E.; Han, K.S.; Mueller, K.T.; Henderson, W.A.; Zhang, J.G. Enabling room temperature sodium metal batteries. Nano Energy 2016, 30, 825–830. [CrossRef] 68. Iermakova, D.I.; Dugas, R.; Palacin, M.R.; Ponrouch, A. On the Comparative Stability of Li and Na Metal Anode Interfaces in Conventional Alkyl Carbonate Electrolytes. J. Electrochem. Soc. 2015, 162, A7060–A7066. [CrossRef] 69. Rodriguez, R.; Loeffler, K.E.; Nathan, S.S.; Sheavly, J.K.; Dolocan, A.; Heller, A.; Mullins, C.B. In Situ Optical Imaging of Sodium Electrodeposition: Effects of Fluoroethylene Carbonate. ACS Energy Lett. 2017, 2, 2051–2057. [CrossRef] 70. Lee, Y.; Lee, J.; Lee, J.; Kim, K.; Cha, A.; Kang, S.; Wi, T.; Kang, S.J.; Lee, H.W.; Choi, N.S. Fluoroethylene Carbonate-Based Electrolyte with 1 M Sodium Bis(fluorosulfonyl)imide Enables High-Performance Sodium Metal Electrodes. ACS Appl. Mater. Interfaces 2018, 10, 15270–15280. [CrossRef] 71. Chen, X.; Shen, X.; Hou, T.Z.; Zhang, R.; Peng, H.J.; Zhang, Q. Ion-Solvent Chemistry-Inspired Cation-Additive Strategy to Stabilize Electrolytes for Sodium-Metal Batteries. Chem-US 2020, 6, 2242–2256. [CrossRef] 72. Fang, W.; Jiang, H.; Zheng, Y.; Zheng, H.; Liang, X.; Sun, Y.; Chen, C.H.; Xiang, H.F. A bilayer interface formed in high concentration electrolyte with SbF3 additive for long-cycle and high-rate sodium metal battery. J. Power Sources 2020, 455, 227956. [CrossRef] 73. Jiang, R.; Hong, L.; Liu, Y.C.; Wang, Y.D.; Patel, S.; Feng, X.Y.; Xiang, H.F. An acetamide additive stabilizing ultra-low concentration electrolyte for long-cycling and high-rate sodium metal battery. Energy Storage Mater. 2021, 42, 370–379. [CrossRef] 74. Zheng, X.Y.; Fu, H.Y.; Hu, C.C.; Xu, H.; Huang, Y.; Wen, J.Y.; Sun, H.B.; Luo, W.; Huang, Y.H. Toward a Stable Sodium Metal Anode in Carbonate Electrolyte: A Compact, Inorganic Alloy Interface. J. Phys. Chem. Lett. 2019, 10, 707–714. [CrossRef]

PDF Image | Recent Development for Sodium Metal Batteries

recent-development-sodium-metal-batteries-022

PDF Search Title:

Recent Development for Sodium Metal Batteries

Original File Name Searched:

batteries-08-00157-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP