Recent Development for Sodium Metal Batteries

PDF Publication Title:

Recent Development for Sodium Metal Batteries ( recent-development-sodium-metal-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 023

Batteries 2022, 8, 157 23 of 25 75. Kreissl, J.J.A.; Langsdorf, D.; Tkachenko, B.A.; Schreiner, P.R.; Janek, J.; Schroder, D. Incorporating Diamondoids as Electrolyte Additive in the Sodium Metal Anode to Mitigate Dendrite Growth. ChemSusChem 2020, 13, 2661–2670. [CrossRef] 76. Wang, H.; Wang, C.; Matios, E.; Li, W. Facile Stabilization of the Sodium Metal Anode with Additives: Unexpected Key Role of Sodium Polysulfide and Adverse Effect of Sodium Nitrate. Angew. Chem. Int. Ed. Engl. 2018, 57, 7734–7737. [CrossRef] 77. Yi, Q.; Lu, Y.; Sun, X.R.; Zhang, H.; Yu, H.L.; Sun, C.W. Fluorinated Ether Based Electrolyte Enabling Sodium-Metal Batteries with Exceptional Cycling Stability. ACS Appl. Mater. Interfaces 2019, 11, 46965–46972. [CrossRef] 78. Zheng, X.Y.; Gu, Z.Y.; Liu, X.Y.; Wang, Z.Q.; Wen, J.Y.; Wu, X.L.; Luo, W.; Huang, Y.H. Bridging the immiscibility of an all-fluoride fire extinguishant with highly-fluorinated electrolytes toward safe sodium metal batteries. Energy Environ. Sci. 2020, 13, 1788–1798. [CrossRef] 79. Liu, X.Y.; Zheng, X.Y.; Dai, Y.M.; Wu, W.Y.; Huang, Y.Y.; Fu, H.Y.; Huang, Y.H.; Luo, W. Fluoride-Rich Solid-Electrolyte-Interface Enabling Stable Sodium Metal Batteries in High-Safe Electrolytes. Adv. Funct. Mater. 2021, 31, 2103522. [CrossRef] 80. Doi, K.; Yamada, Y.; Okoshi, M.; Ono, J.; Chou, C.P.; Nakai, H.; Yamada, A. Reversible Sodium Metal Electrodes: Is Fluorine an Essential Interphasial Component? Angew. Chem. Int. Ed. 2019, 58, 8024–8028. [CrossRef] 81. Schafzahl, L.; Hanzu, I.; Wilkening, M.; Freunberger, S.A. An Electrolyte for Reversible Cycling of Sodium Metal and Intercalation Compounds. ChemSusChem 2017, 10, 401–408. [CrossRef] [PubMed] 82. Wang, S.Y.; Chen, Y.W.; Jie, Y.L.; Lang, S.Y.; Song, J.H.; Lei, Z.W.; Wang, S.; Ren, X.D.; Wang, D.; Li, X.L.; et al. Stable Sodium Metal Batteries via Manipulation of Electrolyte Solvation Structure. Small Methods 2020, 4, 1900856. [CrossRef] 83. Le, P.M.L.; Vo, T.D.; Pan, H.L.; Jin, Y.; He, Y.; Cao, X.; Nguyen, H.V.; Engelhard, M.H.; Wang, C.M.; Xiao, J.; et al. Excellent Cycling Stability of Sodium Anode Enabled by a Stable Solid Electrolyte Interphase Formed in Ether-Based Electrolytes. Adv. Funct. Mater. 2020, 30, 2001151. [CrossRef] 84. Han, M.; Zhu, C.; Ma, T.; Pan, Z.; Tao, Z.; Chen, J. In situ atomic force microscopy study of nano–micro sodium deposition in ester-based electrolytes. Chem. Commun. 2018, 54, 2381–2384. [CrossRef] 85. Wang, S.; Cai, W.; Sun, Z.; Huang, F.; Jie, Y.; Liu, Y.; Chen, Y.; Peng, B.; Cao, R.; Zhang, G. Stable cycling of Na metal anodes in a carbonate electrolyte. Chem. Commun. 2019, 55, 14375–14378. [CrossRef] [PubMed] 86. Li, P.; Jiang, Z.; Huang, X.; Lu, X.; Xie, J.; Cheng, S. Nitrofullerene as an electrolyte-compatible additive for high-performance sodium metal batteries. Nano Energy 2021, 89, 106396. [CrossRef] 87. Li, P.; Huang, X.; Jiang, Z.; Zhang, H.; Yu, P.; Lu, X.; Xie, J. High-rate sodium metal batteries enabled by trifluormethylfullerene additive. Nano Res. 2022, 15, 7172–7179. [CrossRef] 88. Luo, J.; Zhang, Y.; Matios, E.; Wang, P.; Wang, C.; Xu, Y.; Hu, X.; Wang, H.; Li, B.; Li, W. Stabilizing Sodium Metal Anodes with Surfactant-Based Electrolytes and Unraveling the Atomic Structure of Interfaces by Cryo-TEM. Nano Lett. 2022, 22, 1382–1390. [CrossRef] 89. Zhu, M.; Li, L.; Zhang, Y.; Wu, K.; Yu, F.; Huang, Z.; Wang, G.; Li, J.; Wen, L.; Liu, H.-K. An in-situ formed stable interface layer for high-performance sodium metal anode in a non-flammable electrolyte. Energy Storage Mater. 2021, 42, 145–153. [CrossRef] 90. Lee, J.; Lee, Y.; Lee, J.; Lee, S.-M.; Choi, J.-H.; Kim, H.; Kwon, M.-S.; Kang, K.; Lee, K.T.; Choi, N.-S. Ultraconcentrated sodium bis (fluorosulfonyl) imide-based electrolytes for high-performance sodium metal batteries. ACS Appl. Mater. Interfaces 2017, 9, 3723–3732. [CrossRef] 91. Zheng, J.; Chen, S.; Zhao, W.; Song, J.; Engelhard, M.H.; Zhang, J.-G. Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes. ACS Energy Lett. 2018, 3, 315–321. [CrossRef] 92. Niu, Y.-B.; Yin, Y.-X.; Wang, W.-P.; Wang, P.-F.; Ling, W.; Xiao, Y.; Guo, Y.-G. In situ copolymerizated gel polymer electrolyte with cross-linked network for sodium-ion batteries. CCS Chem. 2020, 2, 589–597. [CrossRef] 93. Wang, Q.; Wang, H.; Wu, J.; Zhou, M.; Liu, W.; Zhou, H. Advanced electrolyte design for stable lithium metal anode: From liquid to solid. Nano Energy 2021, 80, 105516. [CrossRef] 94. Lin, X.; Yu, J.; Effat, M.B.; Zhou, G.; Robson, M.J.; Kwok, S.C.; Li, H.; Zhan, S.; Shang, Y.; Ciucci, F. Ultrathin and non-flammable dual-salt polymer electrolyte for high-energy-density lithium-metal battery. Adv. Funct. Mater. 2021, 31, 2010261. [CrossRef] 95. Ford, H.O.; Cui, C.; Schaefer, J.L. Comparison of single-ion conducting polymer gel electrolytes for sodium, potassium, and calcium batteries: Influence of polymer chemistry, cation identity, charge density, and solvent on conductivity. Batteries 2020, 6, 11. [CrossRef] 96. Zheng, Y.W.; Pan, Q.W.; Clites, M.; Byles, B.W.; Pomerantseva, E.; Li, C.Y. High-Capacity All-Solid-State Sodium Metal Battery with Hybrid Polymer Electrolytes. Adv. Energy Mater. 2018, 8, 1801885. [CrossRef] 97. Wang, P.; Zhang, H.R.; Chai, J.C.; Liu, T.M.; Hu, R.X.; Zhang, Z.H.; Li, G.C.; Cui, G.L. A novel single-ion conducting gel polymer electrolyte based on polymeric sodium tartaric acid borate for elevated-temperature sodium metal batteries. Solid State Ion. 2019, 337, 140–146. [CrossRef] 98. Sangeland, C.; Mogensen, R.; Brandell, D.; Mindemark, J. Stable Cycling of Sodium Metal All-Solid-State Batteries with Polycarbonate-Based Polymer Electrolytes. ACS Appl. Polym. Mater. 2019, 1, 825–832. [CrossRef] 99. Wen, P.; Lu, P.; Shi, X.; Yao, Y.; Shi, H.; Liu, H.; Yu, Y.; Wu, Z.S. Photopolymerized gel electrolyte with unprecedented room- temperature ionic conductivity for high-energy-density solid-state sodium metal batteries. Adv. Energy Mater. 2021, 11, 2002930. [CrossRef] 100. Zhang,Z.;Huang,Y.;Li,C.;Li,X.Metal–organicframework-supportedpoly(ethyleneoxide)compositegelpolymerelectrolytes for high-performance lithium/sodium metal batteries. ACS Appl. Mater. Interfaces 2021, 13, 37262–37272. [CrossRef]

PDF Image | Recent Development for Sodium Metal Batteries

PDF Search Title:

Recent Development for Sodium Metal Batteries

Original File Name Searched:

batteries-08-00157-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)