logo

Recent Development for Sodium Metal Batteries

PDF Publication Title:

Recent Development for Sodium Metal Batteries ( recent-development-sodium-metal-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 024

Batteries 2022, 8, 157 24 of 25 101. Yang, J.F.; Zhang, M.; Chen, Z.; Du, X.F.; Huang, S.Q.; Tang, B.; Dong, T.T.; Wu, H.; Yu, Z.; Zhang, J.J.; et al. Flame-retardant quasi-solid polymer electrolyte enabling sodium metal batteries with highly safe characteristic and superior cycling stability. Nano Res. 2019, 12, 2230–2237. [CrossRef] 102. Luo,C.;Shen,T.;Ji,H.;Huang,D.;Liu,J.;Ke,B.;Wu,Y.;Chen,Y.;Yan,C.Mechanicallyrobustgelpolymerelectrolyteforan ultrastable sodium metal battery. Small 2020, 16, 1906208. [CrossRef] [PubMed] 103. Wang,J.;Ni,Y.;Liu,J.;Lu,Y.;Zhang,K.;Niu,Z.;Chen,J.Room-TemperatureFlexibleQuasi-Solid-StateRechargeableNa-O2 Batteries. ACS Cent. Sci. 2020, 6, 1955–1963. [CrossRef] [PubMed] 104. Yu,X.;Grundish,N.S.;Goodenough,J.B.;Manthiram,A.IonicLiquid(IL)LadenMetal-OrganicFramework(IL-MOF)Electrolyte for Quasi-Solid-State Sodium Batteries. ACS Appl. Mater. Interfaces 2021, 13, 24662–24669. [CrossRef] [PubMed] 105. Yang,L.;Jiang,Y.;Liang,X.;Lei,Y.;Yuan,T.;Lu,H.;Liu,Z.;Cao,Y.;Feng,J.NovelSodium–poly(tartaricacid)borate-based single-ion conducting polymer electrolyte for sodium–metal batteries. ACS Appl. Energy Mater. 2020, 3, 10053–10060. [CrossRef] 106. Mendes,T.C.;Zhang,X.;Wu,Y.;Howlett,P.C.;Forsyth,M.;Macfarlane,D.R.Supportedionicliquidgelmembraneelectrolytes for a safe and flexible sodium metal battery. ACS Sustain. Chem. Eng. 2019, 7, 3722–3726. [CrossRef] 107. Zhang,C.;Hu,Q.;Shen,Y.;Liu,W.Fast-ChargingSolid-StateLithiumMetalBatteries:AReview.Adv.EnergySustain.Res.2022, 3, 2100203. [CrossRef] 108. Wang,C.;Liang,J.;Zhao,Y.;Zheng,M.;Li,X.;Sun,X.All-solid-statelithiumbatteriesenabledbysulfideelectrolytes:From fundamental research to practical engineering design. Energy Environ. Sci. 2021, 14, 2577–2619. [CrossRef] 109. Wang,C.;Liang,J.;Hwang,S.;Li,X.;Zhao,Y.;Adair,K.;Zhao,C.;Li,X.;Deng,S.;Lin,X.;etal.Unveilingthecriticalroleof interfacial ionic conductivity in all-solid-state lithium batteries. Nano Energy 2020, 72, 104686. [CrossRef] 110. Wenzel,S.;Leichtweiss,T.;Weber,D.A.;Sann,J.;Zeier,W.G.;Janek,J.InterfacialReactivityBenchmarkingoftheSodiumIon Conductors Na3PS4 and Sodium beta-Alumina for Protected Sodium Metal Anodes and Sodium All-Solid-State Batteries. ACS Appl. Mater. Interfaces 2016, 8, 28216–28224. [CrossRef] 111. Wu,T.;Wen,Z.Y.;Sun,C.Z.;Wu,X.W.;Zhang,S.P.;Yang,J.H.Disorderedcarbontubesbasedoncottonclothformodulating interface impedance in beta”-Al2O3-based solid- state sodium metal batteries. J. Mater. Chem. A 2018, 6, 12623–12629. [CrossRef] 112. Deng,T.;Ji,X.;Zou,L.;Chiekezi,O.;Cao,L.;Fan,X.;Adebisi,T.R.;Chang,H.-J.;Wang,H.;Li,B.;etal.Interfacial-engineering- enabled practical low-temperature sodium metal battery. Nat. Nanotechnol. 2022, 17, 269–277. [CrossRef] [PubMed] 113. Chi,X.;Hao,F.;Zhang,J.;Wu,X.;Zhang,Y.;Gheytani,S.;Wen,Z.;Yao,Y.Ahigh-energyquinone-basedall-solid-statesodium metal battery. Nano Energy 2019, 62, 718–724. [CrossRef] 114. Lei,D.;He,Y.-B.;Huang,H.;Yuan,Y.;Zhong,G.;Zhao,Q.;Hao,X.;Zhang,D.;Lai,C.;Zhang,S.Cross-linkedbetaalumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery. Nat. Commun. 2019, 10, 4244. [CrossRef] 115. Matios,E.;Wang,H.;Wang,C.L.;Hu,X.F.;Lu,X.;Luo,J.M.;Li,W.Y.GrapheneRegulatedCeramicElectrolyteforSolid-State Sodium Metal Battery with Superior Electrochemical Stability. ACS Appl. Mater. Interfaces 2019, 11, 5064–5072. [CrossRef] 116. Ling,W.;Fu,N.;Yue,J.P.;Zeng,X.X.;Ma,Q.;Deng,Q.;Xiao,Y.;Wan,L.J.;Guo,Y.G.;Wu,X.W.AFlexibleSolidElectrolytewith Multilayer Structure for Sodium Metal Batteries. Adv. Energy Mater. 2020, 10, 1903966. [CrossRef] 117. Yu,W.H.;Zhai,Y.F.;Yang,G.M.;Yao,J.Y.;Song,S.F.;Li,S.;Tang,W.P.;Hu,N.;Lu,L.AcompositeelectrolytewithNa3Zr2Si2PO12 microtube for solid-state sodium-metal batteries. Ceram. Int. 2021, 47, 11156–11168. [CrossRef] 118. Zhao,Y.J.;Wang,C.Z.;Dai,Y.J.;Jin,H.B.HomogeneousNattransferdynamicatNa/Na3Zr2Si2PO12interfaceforallsolid-state sodium metal batteries. Nano Energy 2021, 88, 106293. [CrossRef] 119. Yang,J.Y.;Xu,H.H.;Wu,J.Y.;Gao,Z.H.;Hu,F.;Wei,Y.;Li,Y.Y.;Liu,D.Z.;Li,Z.;Huang,Y.H.ImprovingNa/Na3Zr2Si2PO12 Interface via SnOx/Sn Film for High-Performance Solid-State Sodium Metal Batteries. Small Methods 2021, 5, 2100339. [CrossRef] 120. Wang, X.X.; Chen, J.J.; Mao, Z.Y.; Wang, D.J. In situ construction of a stable interface induced by the SnS2 ultra-thin layer for dendrite restriction in a solid-state sodium metal battery. J. Mater. Chem. A 2021, 9, 16039–16045. [CrossRef] 121. Wang, C.Z.; Jin, H.B.; Zhao, Y.J. Surface Potential Regulation Realizing Stable Sodium/Na3Zr2Si2PO12 Interface for Room- Temperature Sodium Metal Batteries. Small 2021, 17, 2100974. [CrossRef] 122. Ruiz-Martinez,D.;Kovacs,A.;Gomez,R.Developmentofnovelinorganicelectrolytesforroomtemperaturerechargeablesodium metal batteries. Energy Environ. Sci. 2017, 10, 1936–1941. [CrossRef] 123. Lin,X.T.;Sun,F.;Sun,Q.;Wang,S.Z.;Luo,J.;Zhao,C.T.;Yang,X.F.;Zhao,Y.;Wang,C.H.;Li,R.Y.;etal.O2/O2−Crossover-and Dendrite-Free Hybrid Solid-State Na-O2 Batteries. Chem. Mater. 2019, 31, 9024–9031. [CrossRef] 124. Wu,S.;Qiao,Y.;Jiang,K.;He,Y.;Guo,S.;Zhou,H.TailoringSodiumAnodesforStableSodium–OxygenBatteries.Adv.Funct. Mater. 2018, 28, 1706374. [CrossRef] 125. Sun, Q.; Dai, L.; Tang, Y.F.; Sun, J.; Meng, W.D.; Luo, T.T.; Wang, L.; Liu, S. Designing a Novel Electrolyte Na3.2 Hf2 Si2.2 P0.8 O11.85 F0.3 for All-Solid-State Na-O2 Batteries. Small Methods 2022, 6, 202200345. [CrossRef] [PubMed] 126. Liang,F.;Qiu,X.;Zhang,Q.;Kang,Y.;Koo,A.;Hayashi,K.;Chen,K.;Xue,D.;Hui,K.N.;Yadegari,H.;etal.Aliquidanodefor rechargeable sodium-air batteries with low voltage gap and high safety. Nano Energy 2018, 49, 574–579. [CrossRef] 127. Wang,C.;Deng,T.;Fan,X.;Zheng,M.;Yu,R.;Lu,Q.;Duan,H.;Huang,H.;Wang,C.;Sun,X.Identifyingsoftbreakdownin all-solid-state lithium battery. Joule 2022, 6, 1770–1781. [CrossRef] 128. Song,S.;Kotobuki,M.;Zheng,F.;Xu,C.;Savilov,S.V.;Hu,N.;Lu,L.;Wang,Y.;Li,W.D.Z.Ahybridpolymer/oxide/ionic-liquid solid electrolyte for Na-metal batteries. J. Mater. Chem. A 2017, 5, 6424–6431. [CrossRef]

PDF Image | Recent Development for Sodium Metal Batteries

recent-development-sodium-metal-batteries-024

PDF Search Title:

Recent Development for Sodium Metal Batteries

Original File Name Searched:

batteries-08-00157-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP