Sodium and sodium-ion energy storage batteries

PDF Publication Title:

Sodium and sodium-ion energy storage batteries ( sodium-and-sodium-ion-energy-storage-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 011

B.L. Ellis, L.F. Nazar / Current Opinion in Solid State and Materials Science 16 (2012) 168–177 177 [43] Doeff MM, Peng MY, Ma Y, De Jonghe LC. Orthorhombic NaxMnO2 as a cathode material for secondary sodium and lithium polymer batteries. J Electrochem Soc 1994;141:L145. [44] Zhang C, Gamble S, Ainsworth D, Slawin AMZ, Andreev YG, Bruce PG. Alkali metal crystalline polymer electrolytes. Nat Mater 2009;8:580. [45] Tevar AD, Whitacre JF. Relating synthesis conditions and electrochemical performance for the sodium intercalation compound Na[sub 4]Mn[sub 9]O[sub 18] in aqueous electrolyte. J Electrochem Soc 2010;157:A870. [46] Tarascon JM, Guyomard DG, Wilkens B, Kinnon WRM, Barboux P. Chemical and electrochemical insertion of Na into the spinel MnO2 phase. Solid State Ionics 1992;57:113. [47] Ohzuku T, Ueda A, Nagayama M, Iwakoshi Y, Komori H. Comparative study of LiCoO2, LiNiCoO2 and LiNiO2 for 4 volt secondary lithium cells. Electrochim Acta 1993;38:1159. [48] Ozawa K. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ionics 1994;69:212. [49] Yazami R, Lebrun N, Bonneau M, Molteni M. High performance LiCoO2 positive electrode material. J Power Sources 1995;54:389. [50] Ohzuku T, Makimura Y. Layered lithium insertion material of LiNi1/2Mn1/ 2O2: a possible alternative to LiCoO2 for advanced lithium-ion batteries. Chem Lett 2001;2:744. [51] Berthelot R, Carlier D, Delmas C. Electrochemical investigation of the P2– NaxCoO2 phase diagram. Nat Mater 2011;10:74. [52] Ma X, Chen H, Ceder G. Electrochemical properties of monoclinic NaMnO2. J Electrochem Soc 2011;158:A1307. [53] Parant J-P, Olazcuaga R, Devalette M, Fouassier C, Hagenmuller ETP, et al. Sur quelques nouvelles phases de formule Na, MnO, (x G 1). J Solid State Chem 1971;3:1. [54] Velikokhatnyi OI, Chang C-C, Kumta PN. Phase stability and electronic structure of NaMnO[sub 2]. J Electrochem Soc 2003;150:A1262. [55] Mendiboure A, Delmas C, Hagenmuller P. Electrochemical intercalation and deintercalation of NaxMnO2 bronzes. J Solid State Chem 1985;57:323. [56] Bhide A, Hariharan K. Physicochemical properties of NaxCoO2 as a cathode for solid state sodium battery. Solid State Ionics 2010;192:360. [57] Carlier D, Cheng JH, Berthelot R, Guignard M, Yoncheva M, Stoyanova R, et al. Physical properties and electrochemical behavior as positive electrode in sodium battery. Dalton Trans 2011;40:9306. [58] Kim D, Kang S-H, Slater M, Rood S, Vaughey JT, Karan N, et al. Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes. Adv Energy Mater 2011;1:333. [59] Ong SP, Chevrier VL, Hautier G, Jain A, Moore C, Kim S, et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ Sci 2011;4:3680. [60] Hasegawa Y, Imanaka N. Effect of the lattice volume on the Al3+ ion conduction in NASICON type solid electrolyte. Solid State Ionics 2005;176:2499. [61] Hoshina K, Dokko K, Kanamura K. Investigation on electrochemical interface between Li4Ti5O12 and Li1 + xAlxTi2􏰣x(PO4)3 NASICON-type solid electrolyte. J Electrochem Soc 2005;152:2138. [62] Kobayashi E, Plashnitsa LS, Doi T, Okada S, Yamaki J-I. Electrochemistry communications electrochemical properties of Li symmetric solid-state cell with NASICON-type solid electrolyte and electrodes. Electrochem Commun 2010;12:894. [63] Tillement O, Angenault J, Couturier JC, Quarton M. Electrochemical studies of mixed valence NASICON. Solid State Ionics 1992;56:391. [64] Patoux S, Rousse G, Leriche J-B, Masquelier C. Structural and electrochemical studies of rhombohedral Na2TiM(PO4)3 and Li1.6Na0.4TiM(PO4)3 (M = Fe, Cr) phosphates. Chem Mater 2003;3:2084. [65] Pahdi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc 1997;144:1609. [66] Uebou Y, Kiyabu T, Okada S, Yamaki J-I. Kyushu University NII-electronic library service. The Rep Inst Adv Mater Study 2002;16:1. [67] Barker J, Gover RKB, Burns P, Bryan A. A symmetrical lithium-ion cell based on lithium vanadium fluorophosphate, LiVPO4F. Electrochem. Solid-State Lett. 2005;8:A285. [68] Plashnitsa LS, Kobayashi E, Noguchi Y, Okada S, Yamaki J-I. Performance of NASICON symmetric cell with ionic liquid electrolyte. J Electrochem Soc 2010;157:A536. [69] Pahdi AK, Nanjundaswamy KS, Goodenough JB. Phospho-olivines as positive- electrode materials for rechargeable lithium batteries. J Electrochem Soc 1997;144:1188. [70] Ellis BL, Makahnouk WRM, Makimura Y, Toghill K, Nazar LF. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat Mater 2007;6:749. [71] Zaghib K, Trottier J, Hovington P, Brochu F, Guerfi A, Mauger A, et al. Characterization of Na-based phosphate as electrode materials for electrochemical cells. J Power Sources 2011;196:9612. [72] Moreau P, Guyomard D, Gaubicher J, Boucher F. Structure and stability of sodium intercalated phases in olivine FePO4. Chem Mater 2010;22: 4126. [73] Chevrier VL, Ceder G. Challenges for Na-ion negative electrodes. J Electrochem Soc 2011;158:A1011. [74] Shiratsuchi T, Okada S, Yamaki J, Nishida T. FePO4 cathode properties for Li and Na secondary cells. J Power Sources 2006;159:268. [75] Lee KT, Ramesh TN, Nan F, Botton G, Nazar LF. Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries. Chem Mater 2011;23:3593. [76] Yamada A, Kudo Y, Liu K-Y. Phase diagram of Lix(Mn[y]Fe[1􏰣y])PO4 (0 6 x, y 6 1). J Electrochem Soc 2001;148:A1153. [77] Barker J, Saidi MY, Swoyer JL. A sodium-ion cell based on the fluorophosphate compound NaVPO4F. Electrochem Solid-State Lett 2003;6:A1. [78] Sauvage F, Quarez E, Tarascon J-M, Baudrin E. Crystal structure and electrochemical properties vs. Na+ of the sodium fluorophosphate Na1.5VOPO4F0.5. Solid State Sci 2006;8:1215. [79] Barker J, Gover RKB, Burns P, Bryan AJ. Hybrid-ion a lithium-ion cell based on a sodium insertion material. Electrochem Solid-State Lett 2006;9:A190. [80] Swafford S, Holt EM. New synthetic approaches to monophosphate fluoride ceramics: synthesis and structural characterization of Na2Mg(PO4)F and Sr5(PO4)3F. Solid State Sci 2002;4:807. [81] Sanz F, Parada C, Ruíz-Valero C. Crystal growth, crystal structure and magnetic properties of disodium cobalt fluorophosphate. J Mater Chem 2001;11:208. [82] Recham N, Chotard J-N, Dupont L, Djellab K, Armand M, Tarascon J-M. Ionothermal synthesis of sodium-based fluorophosphate cathode materials. J Electrochem Soc 2009;156:A993. [83] Ellis BL, Makahnouk WRM, Rowan-Weetaluktuk WN, Ryan DH, Nazar LF. Crystal structure and electrochemical properties of A2MPO4F fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni). Chem Mater 2010;22:1059. [84] Tripathi R, Ramesh TN, Ellis BL, Nazar LF. Scalable synthesis of tavorite LiFeSO4F and NaFeSO4F cathode materials. Angew Chem Int Ed 2010;49:8738. [85] Barpanda P, Chotard J-N, Recham N, Delacourt C, Ati M, Dupont L, et al. Structural, transport, and electrochemical investigation of novel AMSO4F (A = Na, Li; M = Fe, Co., Ni, Mn) metal fluorosulphates prepared using low temperature synthesis routes.. Inorg Chem 2010;49:7401. [86] Pizarro-Sanz J, Dance J, Villeneuve G, Arriortua-Marcaida M. The natural and synthetic tavorite minerals: crystal chemistry and magnetic properties. Mater Lett 1994;18:327. [87] Tripathi R, Gardiner GR, Islam MS, Nazar LF. Alkali-ion conduction paths in LiFeSO4F and NaFeSO4F tavorite-type cathode materials. Chem Mater 2011;23:2278. [88] Asher RC. A lamellar compound of sodium and graphite. J Inorg Nucl Chem 1959;10:238. [89] Ge P, Fouletier M. Electrochemical intercalation of sodium in graphite. Solid State Ionics 1988;30:1172. [90] Stevens DA, Dahn JR. The mechanisms of lithium and sodium insertion in carbon materials. J Electrochem Soc 2001;148:A803. [91] Doeff MM, Ma Y, Visco SJ, De Jonghe LC. Electrochemical insertion of sodium into carbon. J Electrochem Soc 1993;140:L169. [92] Stevens DA, Dahn JR. High capacity anode materials for rechargeable sodium- ion batteries. J Electrochem Soc 2000;147:1271. [93] Wenzel S, Hara T, Janek J, Adelhelm P. Room-temperature sodium-ion batteries: improving the rate capability of carbon anode materials by templating strategies. Energy Environ Sci 2011;4:3342. [94] Park SI, Gocheva I, Okada S, Yamaki J-I. Electrochemical properties of NaTi2(PO4)3 anode for rechargeable aqueous sodium-ion batteries. J Electrochem Soc 2011;158:A1067. [95] Xiong H, Slater MD, Balasubramanian M, Johnson CS, Rajh T. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J Phys Chem Lett 2011;2:2560–5. [96] Senguttuvan P, Palacín MR. Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem Mater 2011;23:4109. [97] Didier C, Guignard M, Denage C, Szajwaj O, Ito S, Saadoune I, et al. Electrochemical Na-deintercalation from NaVO2. Electrochem Solid-State Lett 2011;14:A75. [98] Szajwaj O, Gaudin E, Weill F, Darriet J, Delmas C. Investigation of the new P0 3- Na0.60VO2 phase: structural and physical properties.. Inorg Chem 2009;48:9147. [99] Hamani D, Ati M, Tarascon J-M, Rozier P. NaxVO2 as possible electrode for Na- ion batteries. Electrochem Commun 2011;13:938. [100] Liu H, Zhou H, Chen L, Tang Z, Yang W. Electrochemical insertion/deinsertion of sodium on NaV6O15 nanorods as cathode material of rechargeable sodium- based batteries. J Power Sources 2011;196:814. [101] Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, et al. Electrochemical energy storage for green grid. Chem Rev 2011;111:3577. View publication stats

PDF Image | Sodium and sodium-ion energy storage batteries

PDF Search Title:

Sodium and sodium-ion energy storage batteries

Original File Name Searched:

2012_Na-battery_review.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)