Sodium-Ion Batteries Obtained through Urea Based

PDF Publication Title:

Sodium-Ion Batteries Obtained through Urea Based ( sodium-ion-batteries-obtained-through-urea-based )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 009

Batteries 2018, 4, 8 9 of 10 7. Cao, Y.; Xiao, L.; Wang, W.; Choi, D.; Nie, Z.; Yu, J.; Saraf, L.V.; Yang, Z.; Liu, J. Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life. Adv. Mater. 2011, 23, 3155–3160. [CrossRef] [PubMed] 8. Hung, T.F.; Lan, W.H.; Yeh, Y.W.; Chang, W.S.; Yang, C.C.; Lin, J.C. Hydrothermal Synthesis of Sodium Titanium Phosphate Nanoparticles as Efficient Anode Materials for Aqueous Sodium-Ion Batteries. ACS Sustain. Chem. Eng. 2016, 4, 7074–7079. [CrossRef] 9. Li, Z.; Young, D.; Xiang, K.; Carter, W.C.; Chiang, Y.M. Towards High Power High Energy Aqueous Sodium-Ion Batteries: The NaTi2(PO4)3/Na0.44MnO2 System. Adv. Energy Mater. 2013, 3, 290–294. [CrossRef] 10. Ma, G.; Zhao, Y.; Huang, K.; Ju, Z.; Liu, C.; Hou, Y.; Xing, Z. Effects of the Starting Materials of Na0.44MnO2 Cathode Materials on Their Electrochemical Properties for Na-Ion Batteries. Electrochim. Acta 2016, 222, 36–43. [CrossRef] 11. Kim, H.; Kim, D.J.; Seo, D.H.; Yeom, M.S.; Kang, K.; Kim, D.K.; Jung, Y. Ab Initio Study of the Sodium Intercalation and Intermediate Phases in Na0.44MnO2 for Sodium-Ion Battery. Chem. Mater. 2012, 24, 1205–1211. [CrossRef] 12. Zhou, X.; Guduru, R.K.; Mohanty, P. Synthesis and Characterization of Na0.44MnO2 from Solution Precursors. J. Mater. Chem. A 2013, 1, 2757–2761. [CrossRef] 13. Sauvage, F.; Laffont, L.; Tarascon, J.M.; Baudrin, E. Study of the Insertion/deinsertion Mechanism of Sodium into Na0.44MnO2. Inorg. Chem. 2007, 46, 3289–3294. [CrossRef] [PubMed] 14. Zhao, L.; Ni, J.; Wang, H.; Gao, L. Na0.44MnO2–CNT Electrodes for Non-Aqueous Sodium Batteries. RSC Adv. 2013, 3, 6650–6655. [CrossRef] 15. Wang, C.H.; Yeh, Y.W.; Wongittharom, N.; Wang, Y.C.; Tseng, C.J.; Lee, S.W.; Chang, W.S.; Chang, J.K. Rechargeable Na/Na0.44MnO2 Cells with Ionic Liquid Electrolytes Containing Various Sodium Solutes. J. Power Sources 2015, 274, 1016–1023. [CrossRef] 16. Xu, M.; Niu, Y.; Chen, C.; Song, J.; Bao, S.; Li, C.M. Synthesis and Application of Ultra-Long Na0.44MnO2 Submicron Slabs as a Cathode Material for Na-Ion Batteries. RSC Adv. 2014, 4, 38140–38143. [CrossRef] 17. Kim, D.J.; Ponraj, R.; Kannan, A.G.; Lee, H.W.; Fathi, R.; Ruffo, R.; Mari, C.M.; Kim, D.K. Diffusion Behavior of Sodium Ions in Na0.44MnO2 in Aqueous and Non-Aqueous Electrolytes. J. Power Sources 2013, 244, 758–763. [CrossRef] 18. Ruffo, R.; Fathi, R.; Kim, D.J.; Jung, Y.H.; Mari, C.M.; Kim, D.K. Impedance Analysis of Na0.44MnO2 Positive Electrode for Reversible Sodium Batteries in Organic Electrolyte. Electrochim. Acta 2013, 108, 575–582. [CrossRef] 19. Shen, K.Y.; Miklos, L.; Wang, L.; Axelbaum, R.L. Spray Pyrolysis and Electrochemical Performance of Na0.44MnO2 for Sodium-Ion Battery Cathodes. MRS Commun. 2017, 7, 74–77. [CrossRef] 20. Qiao, R.; Dai, K.; Mao, J.; Weng, T.C.; Sokaras, D.; Nordlund, D.; Song, X.; Battaglia, V.S.; Hussain, Z.; Liu, G.; et al. Revealing and Suppressing Surface Mn(II) Formation of Na0.44MnO2 Electrodes for Na-Ion Batteries. Nano Energy 2015, 16, 186–195. [CrossRef] 21. Dai, K.; Mao, J.; Song, X.; Battaglia, V.; Liu, G. Na0.44MnO2 with Very Fast Sodium Diffusion and Stable Cycling Synthesized via Polyvinylpyrrolidone-Combustion Method. J. Power Sources 2015, 285, 161–168. [CrossRef] 22. Zhan, P.; Wang, S.; Yuan, Y.; Jiao, K.; Jiao, S. Facile Synthesis of Nanorod-like Single Crystalline Na0.44MnO2 for High Performance Sodium-Ion Batteries. J. Electrochem. Soc. 2015, 162, A1028–A1032. [CrossRef] 23. Liu, Q.; Hu, Z.; Chen, M.; Gu, Q.; Dou, Y.; Sun, Z.; Chou, S.; Dou, S.X. Multiangular Rod-Shaped Na0.44MnO2 as Cathode Materials with High Rate and Long Life for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 3644–3652. [CrossRef] [PubMed] 24. Hosono, E.; Matsuda, H.; Honma, I.; Fujihara, S.; Ichihara, M.; Zhou, H. Synthesis of Single Crystalline Electro-Conductive Na0.44MnO2 Nanowires with High Aspect Ratio for the Fast Charge-Discharge Li Ion Battery. J. Power Sources 2008, 182, 349–352. [CrossRef] 25. Hosono, E.; Saito, T.; Hoshino, J.; Okubo, M.; Saito, Y.; Nishio-Hamane, D.; Kudo, T.; Zhou, H. High Power Na-Ion Rechargeable Battery with Single-Crystalline Na0.44MnO2 Nanowire Electrode. J. Power Sources 2012, 217, 43–46. [CrossRef] 26. Li, F.; Ran, J.; Jaroniec, M.; Qiao, S.Z. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale 2015, 7, 17590–17610. [CrossRef] [PubMed]

PDF Image | Sodium-Ion Batteries Obtained through Urea Based

PDF Search Title:

Sodium-Ion Batteries Obtained through Urea Based

Original File Name Searched:

10281-250332.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)