logo

Sodium-ion batteries present and future

PDF Publication Title:

Sodium-ion batteries present and future ( sodium-ion-batteries-present-and-future )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 019

Review Article Chem Soc Rev Fig. 10 (a) Charge and discharge curves of O3-NaCrO2. (Reprinted from ref. 128, Copyright 2010, with permission from Elsevier.) (b) Rate performances of 3.4 wt% carbon-coated O3-NaCrO2. (c) Ex situ XRD patterns obtained during charging and discharging, Cr K-edge XANES spectra obtained during (d) charging and (e) discharging. (Reproduced with permission from ref. 130, Copyright 2015 The Royal Society of Chemistry.) View Article Online coating will provide additional high electric conductivity, which may facilitate improvement in electrode performance even at high rates. 2.1.10. Na2RuO3. The Na2MO3 (M: metal) layer structure, an analogue of Li2MO3, has alternative layers in a cubic close- packed oxygen array. Na2RuO3 shows metallic conduction and is crystallized in layer structures consisting of Na and Na1/3Ru2/3 slabs.137 The crystal structure is indexed as hexagonal R3%m without ordering of the superstructure, unlike Li2MnO3. The first discharge capacity was approximately 150 mA h g􏰣1 at the first cycle and this capacity was maintained throughout the cycling test. For Na+ insertion and extraction, the electrochemical reaction proceeded via a two-phase reaction with hex-I and hex-II phases. Although further studies are needed to elucidate the structural evolution during Na+ insertion and extraction, the use of layered Na2MO3 is an important approach for exploring new transition metal oxides. 2.2. Two- or three-dimensional layer transition metal oxides and fluorides Na-deficiency or Na-free transition metal oxides are interesting because of their reversible Na+ insertion and extraction. These compounds usually have an open structure to allow Na+ ions into their crystal structure. Particularly in three-dimensional 3546 | Chem. Soc. Rev., 2017, 46, 3529--3614 This journal is © The Royal Society of Chemistry 2017 Open Access Article. Published on 28 March 2017. Downloaded on 7/1/2019 3:41:21 AM. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

PDF Image | Sodium-ion batteries present and future

sodium-ion-batteries-present-and-future-019

PDF Search Title:

Sodium-ion batteries present and future

Original File Name Searched:

Sodium-ion batteries present and future.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP