logo

Sodium-ion batteries present and future

PDF Publication Title:

Sodium-ion batteries present and future ( sodium-ion-batteries-present-and-future )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 075

Review Article Chem Soc Rev 23 D. A. Stevens and J. R. Dahn, J. Electrochem. Soc., 2001, 148, A803–A811. 24 L. Joncourt, M. Mermoux, P. H. Touzain, L. Bonnetain, D. Dumas and B. Allard, J. Phys. Chem. Solids, 1996, 57, 877–882. 25 X. Xia and J. R. Dahn, J. Electrochem. Soc., 2012, 159, A515–A519. 26 V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-Gonzalez and T. Rojo, Energy Environ. Sci., 2012, 5, 5884–5901. 27 S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh and K. Fujiwara, Adv. Funct. Mater., 2011, 21, 3859–3867. 28 A. Ponrouch, E. Marchante, M. Courty, J. M. Tarascon and M. R. Palacin, Energy Environ. Sci., 2012, 5, 8572–8583. 29 X. Wu, Y. Cao, X. Ai, J. Qian and H. Yang, Electrochem. Commun., 2013, 31, 145–148. 30 J. Y. Luo, W. J. Cui, P. He and Y. Y. Xia, Nat. Chem., 2010, 2, 760–765. 31 Y. Wang, J. Yi and Y. Xia, Adv. Energy Mater., 2012, 2, 830–840. 32 E. Monyoncho and R. Bissessur, Mater. Res. Bull., 2013, 48, 2678–2688. 33 C. Delmas, J.-J. Braconnier, C. Fouassier and P. Hagenmuller, Solid State Ionics, 1981, 3/4, 165–169. 34 R. Famery, P. Bassoul and F. Queyroux, J. Solid State Chem., 1985, 57, 178–190. 35 R. Famery, P. Bassoul and F. Queyroux, J. Solid State Chem., 1986, 61, 293–300. 36 S. Kikkawa, H. Ohkura and M. Koizumi, Mater. Chem. Phys., 1987, 18, 375–380. 37 B. Fuchs and S. Kemmler-Sack, Solid State Ionics, 1994, 68, 279–285. 38 T. Shirane, R. Kanno, Y. Kawamoto, Y. Takeda, M. Takano, T. Kamiyama and F. Izumi, Solid State Ionics, 1995, 79, 279–285. 39 Y. Takeda, K. Nakahara, M. Nishijima, N. Imanishi, O. Yamamoto and M. Takano, Mater. Res. Bull., 1994, 29, 659–666. 40 V. L. McLaren, A. R. West, M. Tabuchi, A. Nakashima, H. Takahara, H. Kobayashi, H. Sakaebe, H. Kageyama, A. Hirano and Y. Takeda, J. Electrochem. Soc., 2004, 151, A672–A681. 41 T. Matsumura, N. Sonoyama and R. Kanno, Solid State Ionics, 2003, 161, 31–39. 42 S. Miyazaki, S. Kikkawa and M. Koizumi, Synth. Met., 1983, 6, 211–217. 43 S. Kikkawa, S. Miyazaki and M. Koizumi, J. Power Sources, 1984, 14, 231–234. 44 N. Yabuuchi, H. Yoshida and S. Komaba, Electrochemistry, 2012, 80, 716–719. 45 J. Zhao, L. Zhao, N. Dimov, S. Okada and T. Nishida, J. Electrochem. Soc., 2013, 160, A3077–A3081. 46 N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Mishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada and S. Komaba, Nat. Mater., 2012, 11, 512–517. Acknowledgements This work was supported by the Global Frontier R&D Program (2013M3A6B1078875) of the Center for Hybrid Interface Mate- rials (HIM) funded by the Ministry of Science, ICT, & Future Planning and by a Human Resources Development program (No. 20154010200840) of a Korea Institute of Energy Technol- ogy Evaluation and Planning (KETEP) grant funded by the Korean government Ministry of Trade, Industry, and Energy. References 1 B. Dunn, H. Kamath and J.-M. Tarascon, Science, 2011, 334, 928–935. 2 H. Pan, Y.-S. Hu and L. Chen, Energy Environ. Sci., 2013, 6, 2338–2360. 3 Y. Nishi, J. Power Sources, 2001, 100, 101–106. 4 J.-M. Tarascon, Nat. Chem., 2010, 2, 510. 5 C.-X. Zhu and H. Li, Energy Environ. Sci., 2011, 4, 2614–2624. 6 E. de la Llave, V. Borgel, K. J. Park, J.-Y. Hwang, Y.-K. Sun, P. Hartmann, F. F. Chesneau and D. Aurbach, ACS Appl. Mater. Interfaces, 2016, 8, 1867–1875. 7 M. D. Slater, D. Kim, E. Lee and C. S. Johnson, Adv. Funct. Mater., 2013, 23, 947–958. 8 T. B. Reddy and D. Linden, Linden’s Handbook of Batteries, McGraw-Hill, 2010. 9 P. Adelhelm, P. Hartmann, C. L. Bender, M. Busche, C. Eufinger and J. Janek, J. Nanotechnol., 2015, 6, 1016–1055. 10 K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough, Mater. Res. Bull., 1980, 15, 783–789. 11 A. S. Nagelberg and W. L. Worrell, J. Solid State Chem., 1979, 29, 345–354. 12 J. P. Parant, R. Olazcuag, M. Devalett, C. Fouassie and P. Hagenmul, J. Solid State Chem., 1971, 3, 1–5. 13 C. Delmas, C. Fouassier and P. Hagenmuller, Physica B+C, 1980, 99, 81–85. 14 J. J. Braconnier, C. Delmas, C. Fouassier and P. Hagenmuller, Mater. Res. Bull., 1980, 15, 1797–1804. 15 M. S. Whittingham, Prog. Solid State Chem., 1978, 12, 41–99. 16 L. W. Shacklette, J. E. Toth and R. L. Elsenbaumer, Conjugated polymer as substrate for the plating of alkali metal in a nonaqueous secondary battery, Allied Corp., USA, 1985. 17 T. Shishikura and M. Takeuchi, Secondary batteries, ShowaDenko K. K. Hitachi, Ltd, Japan, 1987. 18 K. Kubota and S. Komaba, J. Electrochem. Soc., 2015, 162, A2538–A2550. 19 D. P. Divincenzo and E. J. Mele, Phys. Rev. B: Condens. Matter Mater. Phys., 1985, 32, 2538–2553. 20 R. Alc ́antara, J. M. Jim ́enez-Mateos, P. Lavela and J. L. Tirado, Electrochem. Commun., 2001, 3, 639–642. 21 P. Thomas, J. Ghanbaja and D. Billaud, Electrochim. Acta, 1999, 45, 423–430. 22 D. A. Stevens and J. R. Dahn, J. Electrochem. Soc., 2000, 147, 4428–4431. View Article Online 3602 | Chem. Soc. Rev., 2017, 46, 3529--3614 This journal is © The Royal Society of Chemistry 2017 Open Access Article. Published on 28 March 2017. Downloaded on 7/1/2019 3:41:21 AM. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

PDF Image | Sodium-ion batteries present and future

sodium-ion-batteries-present-and-future-075

PDF Search Title:

Sodium-ion batteries present and future

Original File Name Searched:

Sodium-ion batteries present and future.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP