logo

Sulfur Dioxide and Sulfolane Sodium Batteries

PDF Publication Title:

Sulfur Dioxide and Sulfolane Sodium Batteries ( sulfur-dioxide-and-sulfolane-sodium-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 012

Batteries 2022, 8, 127 12 of 13 7. Gao, L.; Chen, J.; Chen, Q.; Kong, X. The Chemical Evolution of Solid Electrolyte Interface in Sodium Metal Batteries. Sci. Adv. 2022, 8, eabm4606. [CrossRef] 8. Giffin, G.A. Ionic Liquid-Based Electrolytes for “Beyond Lithium” Battery Technologies. J. Mater. Chem. A 2016, 4, 13378–13389. [CrossRef] 9. Hilder, M.; Howlett, P.; Saurel, D.; Gonzalo, E.; Basile, A.; Armand, M.; Rojo, T.; Kar, M.; MacFarlane, D.R.; Forsyth, M. The Effect of Cation Chemistry on Physicochemical Behaviour of Superconcentrated NaFSI Based Ionic Liquid Electrolytes and the Implications for Na Battery Performance. Electrochim. Acta 2018, 268, 94–100. [CrossRef] 10. Monti, D.; Ponrouch, A.; Palacín, M.R.; Johansson, P. Towards Safer Sodium-Ion Batteries via Organic Solvent/Ionic Liquid Based Hybrid Electrolytes. J. Power Sources 2016, 324, 712–721. [CrossRef] 11. Vélez, J.F.; Álvarez, L.V.; del Río, C.; Herradón, B.; Mann, E.; Morales, E. Imidazolium-Based Mono and Dicationic Ionic Liquid Sodium Polymer Gel Electrolytes. Electrochim. Acta 2017, 241, 517–525. [CrossRef] 12. Brissot, C.; Rosso, M.; Chazalviel, J.-N.; Lascaud, S. Dendritic Growth Mechanisms in Lithium/Polymer Cells. J. Power Sources 1999, 81–82, 925–929. [CrossRef] 13. Cao, R.; Mishra, K.; Li, X.; Qian, J.; Engelhard, M.H.; Bowden, M.E.; Han, K.S.; Mueller, K.T.; Henderson, W.A.; Zhang, J.G. Enabling Room Temperature Sodium Metal Batteries. Nano Energy 2016, 30, 825–830. [CrossRef] 14. Jeong, G.; Kim, H.; Sug Lee, H.; Han, Y.K.; Hwan Park, J.; Hwan Jeon, J.; Song, J.; Lee, K.; Yim, T.; Jae Kim, K.; et al. A Room Temperature Sodium Rechargeable Battery Using an SO2 -Based Nonflammable Inorganic Liquid Catholyte. Sci. Rep. 2015, 5, 12827. [CrossRef] 15. Song, J.; Jeong, G.; Lee, A.J.; Park, J.H.; Kim, H.; Kim, Y.J. Dendrite-Free Polygonal Sodium Deposition with Excellent Interfacial Stability in a NaAlCl4-2SO2 Inorganic Electrolyte. ACS Appl. Mater. Interfaces 2015, 7, 27206–27214. [CrossRef] [PubMed] 16. Ruiz-Martínez, D.; Kovacs, A.; Gómez, R. Development of Novel Inorganic Electrolytes for Room Temperature Rechargeable Sodium Metal Batteries. Energy Environ. Sci. 2017, 10, 1936–1941. [CrossRef] 17. Wang, Z.; Lu, K.; Xia, F.; Dahunsi, O.; Gao, S.; Li, B.; Wang, R.; Lu, D.; Qin, W.; Cheng, Y.; et al. Sodiated NaxSnSb nanoparticles embedded in N-doped graphene sponges direct uniform Na nucleation and smooth plating for high efficiency Na metal batteries. J. Mater. Chem. A 2021, 9, 6123–6130. [CrossRef] 18. Genovese, M.; Louli, A.J.; Weber, R.; Sanderson, R.J.; Johnson, M.B.; Dahn, J.R. Combinatorial Methods for Improving Lithium Metal Cycling Efficiency. J. Electrochem. Soc. 2018, 165, A3000–A3013. [CrossRef] 19. Chastain, J.; King, R.C. Handbook of X-ray Photoelectron Spectroscopy: Areference Book of Standard Spectra for Identification and Interpretation of XPS Data; Perkin-Elmer: Eden Prairie, MN, USA, 1992. 20. Dey, A.N.; Kuo, H.C.; Piliero, P.; Kallianidis, M. Inorganic Electrolyte Li/SO2 Rechargeable System Development of a Prototype Hermetic C Cell and Evaluation of Its Performance and Safety Characteristics. J. Electrochem. Soc. 1988, 135, 2115–2120. [CrossRef] 21. Dey, A.N. Inorganic Electrolyte Li/CuCl2 Rechargeable Cell. J. Electrochem. Soc. 1989, 136, 1618–1621. [CrossRef] 22. Tilstam, U. Sulfolane: A Versatile Dipolar Aprotic Solvent. Org. Process Res. Dev. 2012, 16, 1273–1278. [CrossRef] 23. Lewandowski, A.; Kurc, B.; Stepniak, I.; Swiderska-Mocek, A. Properties of Li-Graphite and LiFePO 4 Electrodes in LiPF 6-Sulfolane Electrolyte. Electrochim. Acta 2011, 56, 5972–5978. [CrossRef] 24. Li, S.; Li, B.; Xu, X.; Shi, X.; Zhao, Y.; Mao, L.; Cui, X. Electrochemical Performances of Two Kinds of Electrolytes Based on Lithium Bis(Oxalate)Borate and Sulfolane for Advanced Lithium Ion Batteries. J. Power Sources 2012, 209, 295–300. [CrossRef] 25. Hirata, K.; Morita, Y.; Kawase, T.; Sumida, Y. Electrochemical Performance of an Ethylene Carbonate-Free Electrolyte Based on Lithium Bis(Fluorosulfonyl)Imide and Sulfolane. J. Power Sources 2018, 395, 163–173. [CrossRef] 26. Xing, L.; Vatamanu, J.; Borodin, O.; Smith, G.D.; Bedrov, D. Electrode/Electrolyte Interface in Sulfolane-Based Electrolytes for Li Ion Batteries: A Molecular Dynamics Simulation Study. J. Phys. Chem. C 2012, 116, 23871–23881. [CrossRef] 27. Sun, X.G.; Angell, C.A. New Sulfone Electrolytes for Rechargeable Lithium Batteries. Part I. Oligoether-Containing Sulfones. Electrochem. Commun. 2005, 7, 261–266. [CrossRef] 28. Xu, K.; Angell, C.A. Sulfone-Based Electrolytes for Li-Ion Batteries. J. Electrochem. Soc. 2002, 149, A920–A926. [CrossRef] 29. Watanabe, Y.; Kinoshita, S.-i.; Wada, S.; Hoshino, K.; Morimoto, H.; Tobishima, S.-i. Electrochemical Properties and Lithium Ion Solvation Behavior of Sulfone-Ester Mixed Electrolytes for High-Voltage Rechargeable Lithium Cells. J. Power Sources 2008, 179, 770–779. [CrossRef] 30. Cai, H.; Jing, H.; Zhang, X.; Shen, M.; Wang, Q. Improving High-Voltage Performance of Lithium-Ion Batteries with Sulfolane as an Electrolyte Additive. J. Electrochem. Soc. 2017, 164, A714–A720. [CrossRef] 31. Baxter, J.P.; Grunze, M.; Kong, C.W. Interaction of SO2 with Copper and Copper Oxide Surfaces. J. Vac. Sci. Technol. A Vac. Surfaces Films. 1988, 6, 1123–1127. [CrossRef] 32. Galtayries, A.; Grimblot, J.; Bonnelle, J.-P. Interaction of SO2 with Different Polycrystalline Cu, Cu2O and CuO Surfaces. Surf. Interface Anal. 1996, 24, 345–354. [CrossRef] 33. Nakahashi, T.; Terada, S.; Yokoyama, T.; Hamamatsu, H.; Kitajima, Y.; Sakano, M.; Matsui, F.; Ohta, T. Adsorption of SO2 on Cu(100) Studied by X-ray Absorption Fine Structure Spectroscopy and Scanning Tunneling Microscopy. Surf. Sci. 1997, 373, 1–10. [CrossRef] 34. Pangher, N.; Wilde, L.; Polcik, M.; Haase, J. Structure Determinations of SO2 and Its Decomposition Product SO Adsor Bed on Cu(100) by Use of X-ray Absorption Fine-Structure Measurements. Surf. Sci. 1997, 372, 211–222. [CrossRef]

PDF Image | Sulfur Dioxide and Sulfolane Sodium Batteries

sulfur-dioxide-and-sulfolane-sodium-batteries-012

PDF Search Title:

Sulfur Dioxide and Sulfolane Sodium Batteries

Original File Name Searched:

batteries-08-00127-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP