logo

xcimer Laser-Deposited Na Film Cathode Sodium-Ion Battery

PDF Publication Title:

xcimer Laser-Deposited Na Film Cathode Sodium-Ion Battery ( xcimer-laser-deposited-na-film-cathode-sodium-ion-battery )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 007

Nanomaterials 2022, 12, 3018 7 of 7 References Data Availability Statement: The data presented in this study are available on request from the corresponding author. Conflicts of Interest: The authors declare no conflict of interest. 1. Luo, W.; Chen, X.Q. Surface and interface engineering of silicon-based anode materials for lithium-ion batteries. Adv. Energy Mater. 2017, 7, 1701083. [CrossRef] 2. Bates, J.B.; Gruzaiski, G.R. Rechargeable thin-film lithium microbatteries. Solid State Technol. 1993, 36, 59–63. 3. Whittingham, M.S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4301. [CrossRef] [PubMed] 4. Liu, W.M.; Jiang, M.M. Confined self-assembly of SiOC nanospheres in graphene film to achieve cycle stability of lithium ion batteries. New J. Chem. 2022, 46, 6519–6527. [CrossRef] 5. Chen, X.Q.; Yang, J.P. Nanostructured binary copper chalcogenides: Synthesis strategies and common applications. Nanoscale 2018, 10, 15130. [CrossRef] 6. Liu, Q.N.; Hu, Z. The cathode choice for commercialization of sodium-ion batteries: Layered transition metal oxides versus prussian blue analogs. Adv. Funct. Mater. 2020, 30, 1909530. [CrossRef] 7. Huang, X.L.; Wang, Y.X. Materials engineering for adsorption and catalysis in room-temperature Na–S batteries. Energy Environ. Sci. 2021, 14, 3757–3795. [CrossRef] 8. Stevens, D.A.; Dahn, J.R. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 2000, 147, 1271–1273. [CrossRef] 9. Ding, J.; Zhou, Y. Electrochemical properties of P2-phase Na0.74CoO2 compounds as cathode material for rechargeable sodium-ion batteries. Electrochim. Acta 2013, 87, 388–393. [CrossRef] 10. Ruffo, R.; Fathi, R. Impedance analysis of Na0.44MnO2 positive electrode for reversible sodium batteries in organic electrolyte. Electrochim. Acta 2013, 108, 575–582. [CrossRef] 11. Tamaru, M.; Wang, X. Layered Na2RuO3 as a cathode material for Na-ion batteries. Electrochem. Commun. 2013, 33, 23–26. [CrossRef] 12. Lu, Z.; Donaberger, R.A. Superlattice Ordering of Mn, Ni, and Co in Layered Alkali Transition Metal Oxides with P2, P3, and O3 Structures. Chem. Mater. 2000, 12, 3583–3590. [CrossRef] 13. Gonzalo, E.; Han, M.H. Synthesis and Characterization of Pure P2-and O3-Na2/3Fe2/3Mn1/3O2 as Cathode Materials for Na Ion Batteries. J. Mater. Chem. A 2014, 2, 18523–18530. [CrossRef] 14. Delmas, C.; Fouassier, C. Structural classification and properties of the layered oxides. Phys. B 1980, 99, 81–85. [CrossRef] 15. Lee, D.H.; Xu, J. An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys. Chem. Chem. Phys. 2013, 15, 3304–3312. [CrossRef] 16. Wu, X.; Xu, G. Insights into the Effects of Zinc Doping on Structural Phase Transition of P2-Type Sodium Nickel Manganese Oxide Cathodes for High-Energy Sodium Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8, 22227–22237. [CrossRef] 17. Zhang, X.; Pang, W. P2–Na2/3 Ni1/3 Mn5/9 Al1/9 O2 Microparticles as Superior Cathode Material for Sodium-Ion Batteries: En- hanced Properties and Mechanism via Graphene Connection. ACS Appl. Mater. Interfaces 2016, 8, 20650–20659. [CrossRef] 18. Wang, H.; Yang, B. Electrochemical properties of P2-Na2/3 [Ni1/3 Mn2/3 ]O2 cathode material for sodium ion batteries when cycled in different voltage ranges. Electrochim. Acta 2013, 113, 200–204. [CrossRef] 19. Zhao, W.; Kirie, H. Synthesis of metal ion substituted P2-Na2/3 Ni1/3 Mn2/3 O2 cathode material with enhanced performance for Na ion batteries. Mater. Lett. 2014, 135, 131–134. [CrossRef] 20. Yuan, D.; Hu, X. P2-type Na0.67 Mn0.65 Fe0.2 Ni0.15 O2 cathode material with high-capacity for sodium-ion battery. Electrochim. Acta 2014, 116, 300–305. [CrossRef] 21. Yoshida, H.; Yabuuchi, N. P2-type Na2/3 Ni1/3 Mn2/3-x Tix O2 as a new positive electrode for higher energy Na-ion batteries. Chem. Commun. 2014, 50, 3677–3680. [CrossRef] [PubMed]

PDF Image | xcimer Laser-Deposited Na Film Cathode Sodium-Ion Battery

xcimer-laser-deposited-na-film-cathode-sodium-ion-battery-007

PDF Search Title:

xcimer Laser-Deposited Na Film Cathode Sodium-Ion Battery

Original File Name Searched:

nanomaterials-12-03018.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP