logo

2020 roadmap on solid-state batteries

PDF Publication Title:

2020 roadmap on solid-state batteries ( 2020-roadmap-solid-state-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 049

J. Phys. Energy 2 (2020) 032008 M Pasta et al of these devices (including solid state batteries), by providing rational design guidelines for rapid evaluation and optimization. Acknowledgments PRS acknowledges the support of the Faraday Institution [SOLBAT, grant No. FIRG007] and The Royal Academy of Engineering. ORCID iDs Mauro Pasta  https://orcid.org/0000-0002-2613-4555 Zachary L. Brown  https://orcid.org/0000-0003-0772-3159 Martin R Castell  https://orcid.org/0000-0002-4628-1456 Peiyu Chen  https://orcid.org/0000-0002-6877-6142 Serena A Corr  https://orcid.org/0000-0002-9303-4220 Georgina L. Gregory  https://orcid.org/0000-0002-4688-9269 Laurence J Hardwick  https://orcid.org/0000-0001-8796-685X John T S Irvine  https://orcid.org/0000-0002-8394-3359 Hyeon Jeong Lee  https://orcid.org/0000-0002-0578-5826 Guanchen Li  https://orcid.org/0000-0001-8125-6793 Charles Monroe  https://orcid.org/0000-0002-9894-5023 Christopher I Thomas  https://orcid.org/0000-0001-8090-4541 Charlotte K. Williams  https://orcid.org/0000-0002-0734-1575 Yundong Zhou  https://orcid.org/0000-0001-9222-5722 References [1] Janek J and Zeier W G 2016 A solid future for battery development Nature Energy 1 16141 [2] Randau S et al 2020 Benchmarking the performance of all-solid-state lithium batteries Nature Energy 5 259–70 [3] Lee Y G et al 2020 High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes Nature Energy 5 299–308 [4] Kasemchainan J, Zekoll S, Spencer Jolly D, Ning Z, Hartley G O, Marrow J and Bruce P G 2019 Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells Nat. Mater. 18 1105–11 [5] Spencer Jolly D, Ning Z, Darnbrough J E, Kasemchainan J, Hartley G O, Adamson P, Armstrong D E, Marrow J and Bruce P G 2020 Sodium/Na β ′ ′ alumina interface: effect of pressure on voids ACS Appl. Mater. Interfaces 12 678–85 [6] Krauskopf T, Mogwitz B, Rosenbach C, Zeier W G and Janek J 2019 Diffusion limitation of lithium metal and Li–Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure Adv. Energy Mater. 9 1902568 [7] Wang M J, Choudhury R and Sakamoto J 2019 Characterizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density Joule 3 2165–78 [8] Porz L et al 2017 Mechanism of lithium metal penetration through inorganic solid electrolytes Adv. Energy Mater. 7 1701003 [9] Aguesse F, Manalastas W, Buannic L, Del Amo J M L, Singh G, Llord ́es A and Kilner J 2017 Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal ACS Appl. Mater. Interfaces 9 3808–16 [10] Krauskopf T, Hartmann H, Zeier W G and Janek J 2019 Toward a Fundamental Understanding of the Lithium Metal Anode in Solid-State Batteries - An Electrochemo-Mechanical Study on the Garnet-Type Solid Electrolyte Li6.25Al0.25La3Zr2O12 ACS Appl. Mater. Interfaces 11 14463–77 [11] Albertus P, Babinec S, Litzelman S and Newman A 2018 Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries Nature Energy 3 16–21 [12] Xu C, Ahmad Z, Aryanfar A, Viswanathan V and Greer J R 2017 Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes Proc. of the National Academy of Sciences 114 57–61 [13] Zekoll S et al 2018 Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries Energy Environ. Sci. 11 185–201 [14] Yonemoto F, Nishimura A, Motoyama M, Tsuchimine N, Kobayashi S and Iriyama Y 2017 Temperature effects on cycling stability of Li plating/stripping on Ta-doped Li7La3Zr2O12 J. Power Sources 343 207–15 [15] Sharafi A, Kazyak E, Davis A L, Yu S, Thompson T, Siegel D J, Dasgupta N P and Sakamoto J 2017 Surface Chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12 Chem. Mater. 29 7961–8 [16] Shishvan S S, Fleck N A, McMeeking R M and Deshpande V S 2020 Dendrites as climbing dislocations in ceramic electrolytes: Initiation of growth J. Power Sources 456 1–13 [17] Larcher D and Tarascon J M 2015 Towards greener and more sustainable batteries for electrical energy storage Nat. Chem. 7 19–29 [18] Ren Y, Shen Y, Lin Y and Nan C W 2015 Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte Electrochemistry Communications 57 27–30 [19] Masias A, Felten N, Garcia-Mendez R, Wolfenstine J and Sakamoto J 2019 Elastic, plastic and creep mechanical properties of lithium metal J. Mater. Sci. 54 2585–600 [20] LePage W S, Chen Y, Kazyak E, Chen K H, Sanchez A J, Poli A, Arruda E M, Thouless M D and Dasgupta N P 2019 Lithium mechanics: roles of strain rate and temperature and implications for lithium metal batteries J. Electrochem. Soc. 166 A89–A97 [21] Tarascon J M and Armand M 2001 Issues and challenges facing rechargeable lithium batteries Nature 414 359–67 [22] Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y and Zhang J G 2014 Lithium metal anodes for rechargeable batteries Energy Environ. Sci. 7 513–37 [23] Arakawa M, Tobishima S i, Nemoto Y, Ichimura M and Yamaki J-I 1993 Lithium electrode cycleability and morphology dependence on current density J. Power Sources 43 27–35 48

PDF Image | 2020 roadmap on solid-state batteries

2020-roadmap-solid-state-batteries-049

PDF Search Title:

2020 roadmap on solid-state batteries

Original File Name Searched:

Pasta_2020_J_Phys_Energy_2_032008.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP