2020 roadmap on solid-state batteries

PDF Publication Title:

2020 roadmap on solid-state batteries ( 2020-roadmap-solid-state-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 050

J. Phys. Energy 2 (2020) 032008 M Pasta et al [24] Dornbusch D A, Hilton R, Lohman S D and Suppes G J 2015 Experimental validation of the elimination of dendrite short-circuit failure in secondary lithium-metal convection cell batteries J. Electrochem. Soc. 162 A262–8 [25] Monroe C and Newman J 2005 The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces J. Electrochem. Soc. 152 A396–404 [26] Cheng E J, Sharafi A and Sakamoto J 2017 Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte Electrochim. Acta 223 85–91 [27] Myung S T, Hitoshi Y and Sun Y K 2011 Electrochemical behavior and passivation of current collectors in lithium-ion batteries J. Mater. Chem. 21 9891–911 [28] Vanleeuw D, Sapundjiev D, Sibbens G, Oberstedt S and Salvador Castiñeira P 2014 Physical vapour deposition of metallic lithium J. Radioanal. Nucl. Chem. 299 1113–20 [29] Enterkin J A, Poeppelmeier K R and Marks L D 2011 Oriented catalytic platinum nanoparticles on high surface area strontium titanate nanocuboids Nano Lett. 11 993–7 [30] Silly F and Castell M R 2006 Bimodal growth of Au on SrTiO3(001) Phys. Rev. Lett. 96 086104 [31] Prinz F and Sherry W M 1981 The motion and dynamic interaction of dislocations in lithium and sodium J. Mater. Sci. 16 900–4 [32] Mukherjee P, Faenza N V, Pereira N, Ciston J, Piper L F, Amatucci G G and Cosandey F 2018 Surface structural and chemical evolution of layered LiNi0.8Co0.15Al0.05O2 (NCA) under high voltage and elevated temperature conditions Chem. Mater. 30 8431–45 [33] Gao X et al 2013 Lithium atom and A-site vacancy distributions in lanthanum lithium titanate Chem. Mater. 25 1607–14 [34] Li Y et al 2017 Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy Science 358 506–10 [35] Wang X, Li Y and Meng Y S 2018 Cryogenic electron microscopy for characterizing and diagnosing batteries Joule 2 2225–34 [36] Wang F, Graetz J, Moreno M S, Ma C, Wu L, Volkov V and Zhu Y 2011 Chemical distribution and bonding of lithium in intercalated graphite: Identification with optimized electron energy loss spectroscopy ACS Nano 5 1190–7 [37] Zachman M J, Tu Z, Choudhury S, Archer L A and Kourkoutis L F 2018 Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries Nature 560 345–9 [38] Lozano J G, Martinez G T, Jin L, Nellist P D and Bruce P G 2018 Low-dose aberration-free imaging of Li-Rich cathode materials at various states of charge using electron ptychography Nano Lett. 18 6850–5 [39] US Department of Energy 2015 2015 Annual Merit Review Vehicle Technologies Office [40] Kornyshev A A and Vorotyntsev M A 1981 Conductivity and space charge phenomena in solid electrolytes with one mobile charge carrier species, a review with original material Electrochim. Acta 26 303–23 [41] De Jonghe L C 1982 Transport number gradients and solid electrolyte degradation J. Electrochem. Soc. 129 752 [42] Bachman J C et al 2016 Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction Chem. Rev. 116 140–62 [43] Famprikis T, Canepa P, Dawson J A, Islam M S and Masquelier C 2019 Fundamentals of inorganic solid-state electrolytes for batteries Nat. Mater. 18 1278–91 [44] Koerver R, Aygün I, Leichtweiß T, Dietrich C, Zhang W, Binder J O, Hartmann P, Zeier W G and Janek J 2017 Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes Chem. Mater. 29 5574–82 [45] Li G and Monroe C W 2019 Dendrite nucleation in lithium-conductive ceramics Phys. Chem. Chem. Phys. 21 20354–9 [46] Pervez S A, Cambaz M A, Thangadurai V and Fichtner M 2019 Interface in Solid-State Lithium Battery: Challenges, Progress and Outlook ACS Appl. Mater. Interfaces 11 22029–50 [47] Luntz A C, Voss J and Reuter K 2015 Interfacial challenges in solid-state li ion batteries The Journal of Physical Chemistry Letters 6 4599–604 [48] Wynn T A, Lee J Z, Banerjee A and Meng Y S 2018 In situ and operando probing of solid-solid interfaces in electrochemical devices MRS Bull. 43 740–5 [49] Vardar G et al 2018 Structure, chemistry and charge transfer resistance of the Interface between Li7La3Zr2O12 electrolyte and LiCoO2 cathode Chem. Mater. 30 6259–76 [50] Wang Z, Santhanagopalan D, Zhang W, Wang F, Xin H L, He K, Li J, Dudney N and Meng Y S 2016 In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries Nano Lett. 16 3760–7 [51] Yamamoto K, Iriyama Y, Asaka T, Hirayama T, Fujita H, Fisher C A, Nonaka K, Sugita Y and Ogumi Z 2010 Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery Angewandte Chemie - Int. edn 49 4414–17 [52] Chien P H, Feng X, Tang M, Rosenberg J T, O’Neill S, Zheng J, Grant S C and Hu Y Y 2018 Li distribution heterogeneity in solid electrolyte Li10GeP2S12 upon electrochemical cycling probed by 7Li MRI Journal of Physical Chemistry Letters 9 1990–8 [53] Wenzel S, Randau S, Leichtweiß T, Weber D A, Sann J, Zeier W G and Janek J 2016 Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode Chem. Mater. 28 2400–7 [54] Sang L, Haasch R T, Gewirth A A and Nuzzo R G 2017 Evolution at the Solid Electrolyte/Gold Electrode Interface during Lithium Deposition and Stripping Chem. Mater. 29 3029–37 [55] Galloway T A, Cabo-Fernandez L, Aldous I M, Braga F and Hardwick L J 2017 Shell isolated nanoparticles for enhanced Raman spectroscopy studies in lithium-oxygen cells Faraday Discuss. 205 469–90 [56] Bartsch T, Strauss F, Hatsukade T, Schiele A, Kim A Y, Hartmann P, Janek J and Brezesinski T 2018 Gas evolution in all-solid-state battery cells ACS Energy Letters 3 2539–43 [57] Sagane F, Abe T, Iriyama Y and Ogumi Z 2005 Li+ and Na+ transfer through interfaces between inorganic solid electrolytes and polymer or liquid electrolytes J. Power Sources 146 749–52 [58] Sagane F, Abe T and Ogumi Z 2009 Li+-ion transfer through the interface between Li+-ion conductive ceramic electrolyte and Li+-ion-concentrated propylene carbonate solution J. Phys. Chem. C 113 20135–8 [59] Yamada Y, Sagane F, Iriyama Y, Abe T and Ogumi Z 2009 Kinetics of lithium-ion transfer at the interface between Li0.35La0.55TiO3 and binary electrolytes J. Phys. Chem 113 14528–32 [60] Busche M R et al 2016 Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts Nat. Chem. 8 426–34 [61] Weiss M, Simon F J, Busche M R, Nakamura T, Schröder D, Richter F H and Janek J 2020 From liquid- to solid-state batteries: ion transfer kinetics of heteroionic interfaces Electrochem. Energy Rev. 3 221–38 [62] Weiss M et al 2019 Unraveling the formation mechanism of solid-liquid electrolyte interphases on LiPON thin films ACS Appl. Mater. Interfaces 11 9539–47 49

PDF Image | 2020 roadmap on solid-state batteries

PDF Search Title:

2020 roadmap on solid-state batteries

Original File Name Searched:

Pasta_2020_J_Phys_Energy_2_032008.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)