logo

2020 roadmap on solid-state batteries

PDF Publication Title:

2020 roadmap on solid-state batteries ( 2020-roadmap-solid-state-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 052

J. Phys. Energy 2 (2020) 032008 M Pasta et al [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] Ohno S, Koerver R, Dewald G, Rosenbach C, Titscher P, Steckermeier D, Kwade A, Janek J and Zeier W G 2019 Observation of chemo-mechanical failure and influence of cut-off potentials in all-solid-state Li-S batteries Chem. Mater. 31 2930–40 McClelland I, Cussen E J and Corr S A 2020 Muon spectroscopy for energy storage materials Annual Review of Materials Science 50 371–93 Pfenninger R, Struzik M, Garbayo I, Stilp E and Rupp J L 2019 A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films Nature Energy 4 475–83 Dietrich C, Weber D A, Sedlmaier S J, Indris S, Culver S P, Walter D, Janek J and Zeier W G 2017 Lithium ion conductivity in Li2S-P2S5 glasses-building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7 J. Mater. Chem. A 5 18111–19 Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H and Kanno R 2016 High-power all-solid-state batteries using sulfide superionic conductors Nature Energy 1 16030 Deiseroth H J, Kong S T, Eckert H, Vannahme J, Reiner C, Zaiß T and Schlosser M 2008 Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility Angewandte Chemie - Int. edn 47 755–8 Kraft M A et al 2017 Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I) J. Am. Chem. Soc. 139 10909–18 Zhou L, Assoud A, Zhang Q, Wu X and Nazar L F 2019 New Family of Argyrodite Thioantimonate Lithium Superionic Conductors J. Am. Chem. Soc. 141 19002–13 Yu C et al 2018 Facile synthesis toward the optimal structure-conductivity characteristics of the argyrodite Li6PS5Cl solid-state electrolyte ACS Appl. Mater. Interfaces 10 33296–306 Yu C, Ganapathy S, De Klerk Roslon I, Van Eck E R, Kentgens A P and Wagemaker M 2016 Unravelling Li-Ion transport from picoseconds to seconds: bulk versus interfaces in an argyrodite Li6PS5Cl-Li2S all-solid-state Li-Ion battery J. Am. Chem. Soc. 138 11192–201 Yang X G, Liu T, Gao Y, Ge S, Leng Y, Wang D and Wang C Y 2019 Asymmetric temperature modulation for extreme fast charging of lithium-ion batteries Joule 3 3002–19 Wang P, Qu W, Song W L, Chen H, Chen R and Fang D 2019 Electro–chemo–mechanical issues at the interfaces in solid-state lithium metal batteries Adv. Funct. Mater. 29 1900950 Nyman J and Reutzel-Edens S M 2018 Crystal structure prediction is changing from basic science to applied technology Faraday Discuss. 211 459–76 Lonie D C and Zurek E 2011 XtalOpt: An open-source evolutionary algorithm for crystal structure prediction Comput. Phys. Commun. 182 372–87 Pickard C J and Needs R J 2011 Ab initio random structure searching J. Phys. Condensed Matter 23 053201 Gamon J et al 2019 Computationally guided discovery of the sulfide Li3AlS3 in the Li-Al-S phase field: structure and lithium conductivity Chem. Mater. 31 9699–9714 Collins C, Dyer M S, Pitcher M J, Whitehead G F S, Zanella M, Mandal P, Claridge J B, Darling G R and Rosseinsky M J 2017 Accelerated discovery of two crystal structure types in a complex inorganic phase field Nature 546 280–4 Jia X et al 2019 Anthropogenic biases in chemical reaction data hinder exploratory inorganic synthesis Nature 573 251–5 Schmidt J, Marques M R, Botti S and Marques M A 2019 Recent advances and applications of machine learning in solid-state materials science npj Computational Materials 5 83 Schleder G R, Padilha A C M, Reily Rocha A, Dalpian G M and Fazzio A 2020 Ab Initio simulations and materials chemistry in the age of big data J. Chem. Inform. Modeling 60 452–9 Haghighatlari M, Li J, Heidar-Zadeh F, Liu Y, Guan X and Head-Gordon T 2020 Learning to make chemical predictions: the interplay of feature representation, data and machine learning algorithms arXiv:2003.00157 Himanen L, J ̈ager M O, Morooka E V, Federici Canova F, Ranawat Y S, Gao D Z, Rinke P and Foster A S 2020 DScribe: Library of descriptors for machine learning in materials science Comput. Phys. Commun. 247 106949 Sendek A D, Yang Q, Cubuk E D, Duerloo K A N, Cui Y and Reed E J 2017 Holistic computational structure screening of more than 12 000 candidates for solid lithium-ion conductor materials Energy Environ. Sci. 10 306–20 Dave A, Mitchell J, Kandasamy K, Burke S, Paria B, Poczos B, Whitacre J and Viswanathan V 2019 Autonomous discovery of battery electrolytes with robotic experimentation and machine-learning arXiv:2001.09938 Cubuk E D, Sendek A D and Reed E J 2019 Screening billions of candidates for solid lithium-ion conductors A transfer learning approach for small data J. Chem. Phys. 150 214701 Kerman K, Luntz A, Viswanathan V, Chiang Y M and Chen Z 2017 Review—practical challenges hindering the development of solid state Li Ion batteries J. Electrochem. Soc. 164 A1731–44 Thangadurai V, Narayanan S and Pinzaru D 2014 Garnet-type solid-state fast Li ion conductors for Li batteries: critical review Chem. Soc. Rev. 43 4714 Fu K et al 2017 Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries Energy Environ. Sci. 10 1568–75 Han X et al 2017 Negating interfacial impedance in garnet-based solid-state Li metal batteries Nat. Mater. 16 572–9 Qian J, Adams B D, Zheng J, Xu W, Henderson W A, Wang J, Bowden M E, Xu S, Hu J and Zhang J-G 2016 Anode-free rechargeable lithium metal batteries Adv. Funct. Mater. 26 7094–102 Bu J, Leung P, Huang C, Lee S H and Grant P S 2019 Co-spray printing of LiFePO4 and PEO-Li1.5Al0.5Ge1.5(PO4)3 hybrid electrodes for all-solid-state Li-ion battery applications J. Mater. Chem. 7 19094–103 Leung P, Bu J, Quijano Velasco P, Roberts M R, Grobert N and Grant P S 2019 Single-step spray printing of symmetric all-organic solid-state batteries based on Porous textile dye electrodes Adv. Energy Mater. 9 1901418 Kim D H, Oh D Y, Park K H, Choi Y E, Nam Y J, Lee H A, Lee S M and Jung Y S 2017 Infiltration of solution-processable solid electrolytes into conventional Li-Ion-battery electrodes for all-solid-state Li-Ion batteries Nano Lett. 17 3013–20 Advanced Research Projects Agency-Energy (ARPA-E) U D o E 2016 Integration and optimization of novel ion conducting solids (IONICS) (Washington, DC: Advanced Research Projects Agency Energy) Liang X, Tan F, Wei F and Du J 2019 Research progress of all solid-state thin film lithium battery IOP Conf. Ser.: Earth Environ. Sci. 218 012138 Hao F, Han F, Liang Y, Wang C and Yao Y 2018 Architectural design and fabrication approaches for solid-state batteries MRS Bull. 43 746–51 Ren Y, Shen Y, Lin Y and Nan C W 2019 Microstructure manipulation for enhancing the resistance of garnet-type solid electrolytes to “short circuit” by Li metal anodes ACS Appl. Mater. Interfaces 11 5928–37 51

PDF Image | 2020 roadmap on solid-state batteries

2020-roadmap-solid-state-batteries-052

PDF Search Title:

2020 roadmap on solid-state batteries

Original File Name Searched:

Pasta_2020_J_Phys_Energy_2_032008.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP