First-Principles Grain Boundary Formation in the Cathode Material LiFePO4

PDF Publication Title:

First-Principles Grain Boundary Formation in the Cathode Material LiFePO4 ( first-principles-grain-boundary-formation-the-cathode-materi )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 011

Condens. Matter 2019, 4, 80 11 of 12 8. Mauger, A.; Julien, C.M. Olivine positive electrodes for Li-ion batteries: Status and perspectives. Batteries 2018, 4, 39. [CrossRef] 9. Lachal, M.; Bouchet, R.; Boulineau, A.; Surblé, S.; Rossignol, C.; Alloin, F.; Obbade, S. Remarkable impact of grains boundaries on the chemical delithiation kinetics of LiFePO4. Solid State Ion. 2017, 300, 187–194. [CrossRef] 10. Moriwake, H.; Kuwabara, A.; Fisher, C.A.J.; Huang, R.; Hitosugi, T.; Ikuhara, Y.H.; Oki, H.; Ikuhara, Y. First-principles calculations of lithium-ion migration at a coherent grain boundary in a cathode material, LiCoO2. Adv. Mater. 2013, 25, 618–622. [CrossRef] 11. Kronberg, M.L.; Wilson, F.H. Secondary recrystallization in copper. Trans. AIME 1949, 185, 501–514. [CrossRef] 12. Gertsman, V.Y. Coincidence site lattice misorientations of crystals in orthorhombic systems, with application to YBa2Cu3O7. Scr. Metall. Mater. 1992, 27, 291–296. [CrossRef] 13. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [CrossRef] [PubMed] 14. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [CrossRef] 15. Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [CrossRef] [PubMed] 16. Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [CrossRef] [PubMed] 17. Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687. [CrossRef] 18. Andersson, A.S.; Thomas, J.O. The source of first-cycle capacity loss in LiFePO4. J. Power Sources 2001, 97–98, 498–502. [CrossRef] 19. Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Oxford University Press: England, UK, 1990. 20. Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 2009, 21, 084204. [CrossRef] 21. Tuomisto, F.; Makkonen, I. Defect identification in semiconductors with positron annihilation: Experiment and theory. Rev. Mod. Phys. 2013, 85, 1583–1631. [CrossRef] 22. Kuriplach, J.; Barbiellini, B. Improved generalized gradient approximation for positron states in solids. Phys. Rev. B 2014, 89, 155111. [CrossRef] 23. Blaha, P.; Schwarz, K.; Madsen, G.K.H.; Kvasnicka, D.; Luitz, J.; Laskowski, R.; Tran, F.; Marks, L.D. WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties; Vienna University of Technology: Vienna, Austria, 2018; ISBN 3-9501031-1-2. 24. Barbiellini, B.; Kuriplach, J. Proposed parameter-free model for interpreting the measured positron annihilation spectra of materials using a generalized gradient approximation. Phys. Rev. Lett. 2015, 114, 147401. [CrossRef] [PubMed] 25. Drummond, N.D.; López Ríos, P.; Needs, R.J.; Pickard, C.J. Quantum Monte Carlo study of a positron in an electron gas. Phys. Rev. Lett. 2011, 107, 207402. [CrossRef] [PubMed] 26. Kuriplach, J. Comparison of grain boundary structure in metals and semiconductors as probed by positrons. Acta Phys. Polon. A 2014, 125, 722–725. [CrossRef] 27. Kuriplach, J.; Melikhova, O.; Cˇ ížek, J.; Procházka, I.; Brauer, G.; Anwand, A. Positron annihilation at planar defects in oxides. Mater. Sci. Forum 2013, 733, 240–244. [CrossRef] 28. Kuriplach, J.; Barbiellini, B. Parameter-free gradient correction for positron states in oxides. Defect Diffus. Forum 2016, 373, 35. [CrossRef] 29. Barbiellini, B.; Kuriplach, J. Advanced characterization of lithium battery materials with positrons. J. Phys. Conf. Ser. 2017, 791, 012016. [CrossRef] 30. Here the numerical precision of calculated lifetime is somewhat lower (~0.5 ps) compared to Refs. [28,29]. 31. Zhang, P.; Wang, Y.; Lin, M.; Zhang, D.; Ren, X.; Yuan, Q. Doping effect of Nb5+ on the microstructure and defects of LiFePO4. J. Electrochem. Soc. 2012, 159, A402–A409. [CrossRef] 32. We note that in our case the value of Σ does not need to be an odd number in contrast to cubic systems. 33. Cococcioni, M.; Marzari, N. Energetics and cathode voltages of LiMPO4 olivines (M = Fe, Mn) from extended Hubbard functionals. Phys. Rev. Mater. 2019, 3, 033801. [CrossRef]

PDF Image | First-Principles Grain Boundary Formation in the Cathode Material LiFePO4

PDF Search Title:

First-Principles Grain Boundary Formation in the Cathode Material LiFePO4

Original File Name Searched:

condensedmatter-04-00080.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)