logo

High-Energy X-Ray Compton Scattering Imaging of 18650-Type Lithium-Ion Battery

PDF Publication Title:

High-Energy X-Ray Compton Scattering Imaging of 18650-Type Lithium-Ion Battery ( high-energy-x-ray-compton-scattering-imaging-18650-type-lith )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 007

Condens. Matter 2019, 4, 66 7 of 8 Supplementary Materials: The following are available online at http://www.mdpi.com/2410-3896/4/3/66/s1, Figure S1: (a) Cycling performance of the aged cell; (b) and (c) Impedance spectrum in the fresh and aged cells, respectively. Figure S2: Compton scattered X-ray energy spectrum obtained from nine Ge-SSD. Table S1: Areas under the low- and high-momentum region of the spectrum. Figure S3: Normalized Compton scattered X-ray energy spectra obtained from the charged and discharged NMC cathode in the fresh cell. Author Contributions: Conceptualization, Y.S. and B.B.; experiment, K.S., A.-P.H., N.T., K.J., J.K., H.M., A.T., H.S., and Y.S.; formal analysis, K.S., D.H., H.H., H.S., and B.B.; resources, N.T., K.J., J.K., Y.S., M.K., S.H., A.B., H.S., and B.B.; data curation, all co-authors; writing—original draft preparation, K.S., H.H., H.S., and B.B.; writing—review and editing, all co-authors; supervision, Y.S., M.K., S.H., A.B., H.S., and B.B.; project administration, B.B.; funding acquisition, K.S., A.-P.H., S.H., and A.B. Funding: The work at Gunma University was supported by the Association for the Advancement of Science & Technology (Gunma University) and Project for Functional Materials (Gunma University). The work at Northeastern University was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (grant number DE-FG02-07ER46352), and benefited from Northeastern University’s Advanced Scientific Computation Center (ASCC) and the NERSC supercomputing center through DOE (grant number DE-AC02-05CH11231). A.-P.H. was supported by University of Helsinki Doctoral Program in Materials Research and Nanosciences (MATRENA). A.-P.H. and S.H. were supported by the Academy of Finland (grant no. 1295696). Acknowledgments: The Compton scattering experiment was performed with the approval of JASRI (Proposal Nos. 2018B1264 and 2019A1721). Conflicts of Interest: The authors declare no conflict of interest. References 1. XCOM. Available online: https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html (accessed on 9 April 2019). 2. Schülke, W. The theory of Compton scattering. In X-ray Compton Scattering, 1st ed.; Cooper, M.J., Mijnarends, P.E., Shiotani, N., Sakai, N., Bansil, A., Eds.; Oxford University Press: Oxford, UK, 2004; pp. 22–81. 3. Barbiellini, B. A natural orbital method for the electron momentum distribution in matter. J. Phys. Chem. Solids 2000, 61, 341–344. [CrossRef] 4. Barbiellini, B.; Bansil, A. Treatment of correlation effects in electron momentum density: Density functional theory and beyond. J. Phys. Chem. Solids 2001, 62, 2181–2189. [CrossRef] 5. Suzuki, K.; Barbiellini, B.; Orikasa, Y.; Go, N.; Sakurai, H.; Kaprzyk, S.; Itou, M.; Yamamoto, K.; Uchimoto, Y.; Wang, Y.J.; et al. Extracting the Redox Orbitals in Li Battery Materials with High-Resolution X-ray Compton Scattering Spectroscopy. Phys. Rev. Lett. 2015, 114, 087401. [CrossRef] [PubMed] 6. Barbiellini, B.; Suzuki, K.; Orikasa, Y.; Kaprzyk, S.; Itou, M.; Yamamoto, K.; Wang, Y.J.; Hafiz, H.; Yamada, R.; Uchimoto, Y.; et al. Identifying a descriptor for d-orbital delocalization in cathodes of Li batteries based on X-ray Compton scattering. J. Appl. Phys. 2016, 109, 073102. [CrossRef] 7. Hafiz, H.; Suzuki, K.; Barbiellini, B.; Orikasa, Y.; Callewaert, V.; Kaprzyk, S.; Itou, M.; Yamamoto, K.; Yamada, R.; Uchimoto, Y.; et al. Visualizing redox orbitals and their potentials in advanced lithium-ion battery materials using high-resolution X-ray Compton scattering. Sci. Adv. 2017, 3, e1700971. [CrossRef] [PubMed] 8. Itou, M.; Orikasa, Y.; Gogyo, Y.; Suzuki, K.; Sakurai, H.; Uchimoto, Y.; Sakurai, Y. Compton scattering imaging of a working battery using synchrotron haigh-energy X-rays. J. Synchrotron Radiat. 2015, 22, 161–164. [CrossRef] [PubMed] 9. Suzuki, K.; Barbiellini, B.; Orikasa, Y.; Kaprzyk, S.; Itou, M.; Yamamoto, K.; Wang, Y.J.; Hafiz, H.; Uchimoto, Y.; Bansil, A.; et al. Non-destructive measurement of in-operando lithium concentration in batteries via X-ray Compton scattering. J. Appl. Phys. 2016, 119, 025103. [CrossRef] 10. Suzuki, K.; Suzuki, A.; Ishikawa, T.; Itou, M.; Yamashige, H.; Orikasa, Y.; Uchimoto, Y.; Sakurai, Y.; Sakurai, H. In-operando quantitation of Li concentration for commercial Li-ion rechargeable battery using high-energy X-ray Compton scattering. J. Synchrotron Radiat. 2017, 24, 1006. [CrossRef] [PubMed] 11. Suzuki, K.; Kanai, R.; Tsuji, N.; Yamashige, H.; Orikasa, Y.; Uchimoto, Y.; Sakurai, Y.; Sakurai, H. Dependency of the charge-discharge rate on lithium reaction distributions for a commercial lithium coin cell visualized by Compton scattering imaging. Condens. Matter. 2018, 3, 27. [CrossRef]

PDF Image | High-Energy X-Ray Compton Scattering Imaging of 18650-Type Lithium-Ion Battery

high-energy-x-ray-compton-scattering-imaging-18650-type-lith-007

PDF Search Title:

High-Energy X-Ray Compton Scattering Imaging of 18650-Type Lithium-Ion Battery

Original File Name Searched:

condensedmatter-04-00066-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP