Mossbauer Spectroscopy of Triphylite (LiFePO4) at Low Temperatures

PDF Publication Title:

Mossbauer Spectroscopy of Triphylite (LiFePO4) at Low Temperatures ( mossbauer-spectroscopy-triphylite-lifepo4-at-low-temperature )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 013

Condens. Matter 2019, 4, 86 13 of 15 AuthorContributions: Conceptualizationandmethodology,T.K.,J.K.(JaroslavKohout)andJ.K.(JanKuriplach); measurements and data evaluations, T.K., J.K. (Jaroslav Kohout), M.D., and M.V.; computations and formal analysis, J.Ku.; writing—review and editing, T.K., J.K. (Jaroslav Kohout) and J.K. (Jan Kuriplach). Funding: The support by projects SVV-2017-260442 and NanoCent—Nanomaterials Centre for Advanced Applications, project No. CZ.02.1.01/0.0/0.0/15_003/0000485, financed by ERDF, is gratefully acknowledged. Magnetic experiments were performed in MGML—Materials Growth & Measurement Laboratory (http://www. mgml.eu), which is supported within the program of Czech Research Infrastructures (project No. LM2018096). Jan Kuriplach was partially supported by the Czech Republic’s Ministry of Education, Youth and Sports from the Large Infrastructures for Research, Experimental Development and Innovations project “IT4Innovations National Supercomputing Center—LM2015070”. Acknowledgments: Fruitful discussions with B. Barbiellini are appreciated. The authors gratefully acknowledge K. Záveˇta for his advices and help concerning the interpretation of magnetic measurements. Figures related to the visualization of the LiFePO4 crystal structure were generated using CrystalMaker⃝R . CrystalMaker Software Ltd., Oxford, England (http://www.crystalmaker.com). Conflicts of Interest: The authors declare no conflict of interest. References and Notes 1. Padhi, A.K.; Nanjundaswamy, K.S.; Goodenough, J.B. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc. 1997, 144, 1188–1194. [CrossRef] 2. Mauger, A.; Julien, C.M. Olivine Positive Electrodes for Li-Ion Batteries: Status and Perspectives. Batteries 2018, 4, 39. [CrossRef] 3. Streltsov, V.A.; Belokoneva, E.L.; Tsirelson, V.G.; Hansen, N.K. Multipole analysis of the electron density in triphylite, LiFePO4, using X-ray diffraction data. Acta Cryst. B 1993, 49, 147–153. [CrossRef] 4. Liu, C.; Neale, Z.G.; Cao, G. Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 2016, 19, 109–123. [CrossRef] 5. Liu, X.; Wang, Y.J.; Barbiellini, B.; Hafiz, H.; Basak, S.; Liu, J.; Richardson, T.; Shu, G.; Chou, F.; Weng, T.C.; et al. Why LiFePO4 is a safe battery electrode: Coulomb repulsion induced electron-state reshuffling upon lithiation. Phys. Chem. Chem. Phys. 2015, 17, 26369–26377. [CrossRef] [PubMed] 6. Kuriplach, J.; Pulkkinen, A.; Barbiellini, B. First principles study of the impact of grain boundary formation in the cathode material LiFePO4. Condens. Matter 2019, 4, 80. [CrossRef] 7. Lachal, M.; Bouchet, R.; Boulineau, A.; Surblé, S.; Rossignol, C.; Alloin, F.; Obbade, S. Remarkable impact of grains boundaries on the chemical delithiation kinetics of LiFePO4. Solid State Ion. 2017, 300, 187–194. [CrossRef] 8. Jena, A.; Nanda, B.R.K. Unconventional magnetism and band gap formation in LiFePO4: Consequence of polyanion induced non-planarity. Sci. Rep. 2016, 6, 19573. [CrossRef] 9. Santoro, R.P.; Newnham, R.E. Antiferromagnetism in LiFePO4. Acta Cryst. 1967, 22, 344–347. [CrossRef] 10. Rousse, G.; Rodriguez-Carvajal, J.; Patoux, S.; Masquelier, C. Magnetic structures of the triphylite LiFePO4 and of its delithiated form FePO4. Chem. Mater. 2003, 15, 4082–4090. [CrossRef] 11. Li, J.; Garlea, V.O.; Zarestky, J.L.; Vaknin, D. Spin-waves in antiferromagnetic single-crystal LiFePO4. Phys. Rev. B 2006, 73, 024410. [CrossRef] 12. Liang, G.; Park, K.; Li, J.; Benson, R.E.; Vaknin, D.; Markert, J.T.; Croft, M.C. Anisotropy in magnetic properties and electronic structure of single-crystal LiFePO4. Phys. Rev. B 2008, 77, 064414. [CrossRef] 13. Toft-Petersen, R.; Reehuis, M.; Jensen, T.B.S.; Andersen, N.H.; Li, J.; Le, M.D.; Laver, M.; Niedermayer, C.; Klemke, B.; Lefmann, K.; et al. Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4. Phys. Rev. B 2015, 92, 024404. [CrossRef] 14. Werner, J.; Sauerland, S.; Koo, C.; Neef, C.; Pollithy, A.; Skourski, Y.; Klingeler, R. High magnetic field phase diagram and failure of the magnetic Grüneisen scaling in LiFePO4. Phys. Rev. B 2019, 99, 214432. [CrossRef] 15. Gütlich, P.; Bill, E.; Trautwein, A.X. Mössbauer Spectroscopy and Transition Metal Chemistry. Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2011. [CrossRef] 16. Van Alboom, A.; De Grave, E.; Wohlfahrt-Mehrens, M. Temperature dependence of the Fe2+ Mössbauer parameters in triphylite (LiFePO4). Am. Mineral. 2011, 96, 408–416. [CrossRef]

PDF Image | Mossbauer Spectroscopy of Triphylite (LiFePO4) at Low Temperatures

PDF Search Title:

Mossbauer Spectroscopy of Triphylite (LiFePO4) at Low Temperatures

Original File Name Searched:

condensedmatter-04-00086.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)