logo

Mossbauer Spectroscopy of Triphylite (LiFePO4) at Low Temperatures

PDF Publication Title:

Mossbauer Spectroscopy of Triphylite (LiFePO4) at Low Temperatures ( mossbauer-spectroscopy-triphylite-lifepo4-at-low-temperature )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 014

Condens. Matter 2019, 4, 86 14 of 15 17. Rhee, C.H.; Lee, I.K.; Moon, S.J.; Kim, S.J.; Kim, C.S. Neutron diffraction and Mössbauer studies of LiFePO4. J. Korean Phys. Soc. 2011, 58, 472–475. [CrossRef] 18. El Khalifi, M.; Lippens, P.E. First-principles investigation of the 57Fe Mössbauer parameters of LiFePO4 and FePO4. J. Phys. Chem. C 2016, 120, 28375–28389. [CrossRef] 19. Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871. [CrossRef] 20. Mateˇj, Z.; Kužel, R.; Nichtová, L. XRD total pattern fitting applied to study of microstructure of TiO2 films. Powder Diffr. 2010, 25, 125–131. [CrossRef] 21. Klencsár, Z.; Kuzmann, E.; Vértes, A. User-friendly software for Mössbauer spectrum analysis. J. Radioanal. Nucl. Chem. 1996, 210, 105–118. [CrossRef] 22. Dufek, P.; Blaha, P.; Schwarz, K. Determination of the nuclear quadrupole moment of 57Fe. Phys. Rev. Lett. 1995, 75, 3545–3548. [CrossRef] [PubMed] 23. Hamelet, S.; Gibot, P.; Casas-Cabanas, M.; Bonnin, D.; Grey, C.P.; Cabana, J.; Leriche, J.B.; Rodriguez-Carvajal, J.; Courty, M.; Levasseur, S.; et al. The effects of moderate thermal treatments under air on LiFePO4-based nano powders. J. Mater. Chem. 2009, 19, 3979–3991. [CrossRef] 24. Blaha, P.; Schwarz, K.; Madsen, G.K.H.; Kvasnicka, D.; Luitz, J.; Laskowski, R.; Tran, F.; Marks, L.D. WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties; Karlheinz Schwarz, Technische Universität Wien: Wien, Austria, 2001; ISBN 3-9501031-1-2. 25. Singh, D. Ground-state properties of lanthanum: Treatment of extended-core states. Phys. Rev. B 1991, 43, 6388–6392. [CrossRef] [PubMed] 26. Schwarz, K.; Blaha, P.; Madsen, G.K.H. Electronic structure calculations of solids using the WIEN2k package for material sciences. Comp. Phys. Commun. 2002, 147, 71–76. [CrossRef] 27. Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687. [CrossRef] 28. Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [CrossRef] 29. Kuneš, J.; Novák, P.; Schmid, R.; Blaha, P.; Schwarz, K. Electronic structure of fcc Th: Spin-orbit calculation with 6p1/2 local orbital extension. Phys. Rev. B 2001, 64, 153102. [CrossRef] 30. Blaha, P.; Schwarz, K.; Herzig, P. First-principles calculation of the electric field gradient of Li3N. Phys. Rev. Lett. 1985, 54, 1192–1195. [CrossRef] 31. Singh, D.J.; Schwarz, K.; Blaha, P. Electric-field gradients in YBa2Cu3O7: Discrepancy between experimental and local-density-approximation charge distributions. Phys. Rev. B 1992, 46, 5849–5852. [CrossRef] 32. Blügel, S.; Akai, H.; Zeller, R.; Dederichs, P.H. Hyperfine fields of 3d and 4d impurities in nickel. Phys. Rev. B 1987, 35, 3271–3283. [CrossRef] 33. Novák,P.CalculationofHyperfineFieldinWIEN2k; TechnicalReport;TechnischeUniversitätWien:Wien,Austria, 2006. Available online: http://www.wien2k.at/reg_user/textbooks/Bhf_3.pdf (accessed on 16 October 2019). 34. Geller, S.; Durand, J.L. Refinement of the structure of LiMnPO4. Acta Cryst. 1960, 13, 325–331. [CrossRef] 35. Herle, P.S.; Ellis, B.; Coombs, N.; Nazar, L.F. Nano-network electronic conduction in iron and nickel olivine phosphates. Nat. Mater. 2004, 3, 147–152. [CrossRef] [PubMed] 36. Sugiyama, J.; Nozaki, H.; Harada, M.; Kamazawa, K.; Ofer, O.; Månsson, M.; Brewer, J.H.; Ansaldo, E.J.; Chow, K.H.; Ikedo, Y.; et al. Magnetic and diffusive nature of LiFePO4 investigated by muon spin rotation and relaxation. Phys. Rev. B 2011, 84, 054430. [CrossRef] 37. Menil, F. Systematic trends of the 57Fe Mössbauer isomer shifts in (FeOn) and (FeFn) polyhedra. Evidence of a new correlation between the isomer shift and the inductive effect of the competing bond T-X (→ Fe) (where X is O or F and T any element with a formal positive charge). J. Phys. Chem. Solids 1985, 46, 763–789. [CrossRef] 38. Kündig, W. Evaluation of Mössbauer spectra for 57Fe. Nucl. Instrum. Methods 1967, 48, 219–228. [CrossRef] 39. Cococcioni, M.; Marzari, N. Energetics and cathode voltages of LiMPO4 olivines (M = Fe, Mn) from extended Hubbard functionals. Phys. Rev. Mater. 2019, 3, 033801. [CrossRef]

PDF Image | Mossbauer Spectroscopy of Triphylite (LiFePO4) at Low Temperatures

mossbauer-spectroscopy-triphylite-lifepo4-at-low-temperature-014

PDF Search Title:

Mossbauer Spectroscopy of Triphylite (LiFePO4) at Low Temperatures

Original File Name Searched:

condensedmatter-04-00086.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP