Next Generation Electrical Energy Storage

PDF Publication Title:

Next Generation Electrical Energy Storage ( next-generation-electrical-energy-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 026

REPORT OF THE BASIC RESEARCH NEEDS WORKSHOP 2.1.3 REFERENCES 1. Whittingham, M.S., Chemistry of intercalation compounds: Metal guests in chalcogenide hosts, Prog. Sol. St. Chem. 1978, 12 (1), 41. 2. Kim, C.; Norberg, N.S.; Alexander, C. T.; Kostecki, R.; Cabana, J., Mechanism of phase propagation during lithiation in carbon-free Li4Ti5O12 battery electrodes, Adv. Functional Mater., 2013, 23 (9), 1214. 3. Song, M.-S.; Benayad, A.; Choi, Y.-M.; Park, K.-S., Does Li4Ti5O12 need carbon in lithium ion batteries? Carbon-free electrode with exceptionally high electrode capacity, Chem. Commun., 2012, 48 (4), 516. 4. Lai, W.; Erdonmez, C.K.; Marinis, T.F.; Bjune, C.K.; Dudney, N.J.; Xu, F.; Wartena, R.; Chiang, Y.-M., Ultrahigh energy-density microbatteries enabled by new electrode architecture and micropackaging design, Adv. Mater., 2010, 22 (20), E139. 5. Alexander, C.T.; Kim, C.; Yaylian, R.; Cabana, J., Toward general rules for the design of battery electrodes based on titanium oxides and free of conductive additives, Energy Technol., 2014, 2 (4), 383. 6. Long, J.W.; Rolison, D.R., Architectural design, interior decoration, and three-dimensional plumbing en route to multifunctional nanoarchitectures, Acc. Chem. Res., 2007, 40 (9), 854–862, DOI: 10.1021/ar6000445. 7. Arthur, T.S.; Bates, D.J.; Cirigliano, N.; Johnson, D.C.; Malati, P.; Mosby, J.M.; Perre, E.; Rawls , M.T.; Prieto, A.L.; Dunn, B., Three-dimensional electrodes and battery architectures, MRS Bulletin, 2011, 36 (07), 523. 8. Zhang, H., Yu, X.; Braun, P.V., Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes, Nature Nanotech., 2011, 6 (5), 277. 9. Noked, M.; Liu, C.; Hu, J.; Gregorczy, K.; Rubloff, G.W.; Lee, S.B., Electrochemical thin layers in nanostructures for energy storage, Acc. Chem. Res., 2016, 49 (10), 2336. 10. Nyström, G., Marais, A.; Karabulut, E.; Wågberg, L.; Cui, Y.; Hamedi, M.M., Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries, Nature Commun., 2015, 6 , 7259. 11. Lindstrom, H.; Sodergren, S.; Solbrand, A.; Rensmo, H.; Hjelm, J.; Hagfeldt, A.; Lindquist, S.E., Li+ ion insertion in TiO2 (anatase): 1. Chronoamperometry on CVD films and nanoporous films, J. Phys. Chem. B, 1997, 101 (39), 7710. 12. Come, J.; Taberna, P.L.; Hamelet, S.; Masquelier, C.; Simon, P., Electrochemical kinetic study of LiFePO4 using cavity microelectrode, J. Electrochem. Soc., 2011, 158 (10), A1090. 13. Augustyn, V.; Come, J.; Lowe, M.A.; Kim, J.W.; Taberna, P.L.; Tolbert, S.H.; Abruna, H.D.; Simon, P.; Dunn, B., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance, Nat. Mater., 2013, 12 (6), 518. 14. Liu, C.; Gillette, E.I.; Chen, X.; Pearse, A.J.; Kozen, A.C.; Schroeder, M.A.; Gregorczyk, K.E.; Lee, S.B.; Rubloff, G.W., An all-in-one nanopore battery array, Nature Nanotech., 2014, 9 (12), 1031. 15. Dylla, A. G.; Henkelman, G.; Stevenson, K.J., Lithium insertion in nanostructured TiO2(B) architectures, Acc. Chem. Res., 2013, 46 (5), 1104. 16. Balakrishnan, P. G.; Ramesh, R.; Kumar, T.P., Safety mechanisms in lithium-ion batteries, J. Power Sources, 2006, 155 (2), 401. 17. Wu, H.; Zhuo, D.; Kong, D.; Cui, Y., Improving battery safety by early detection of internal shorting with a bifunctional separator, Nat. Commun., 2014, 5, 5193. 18. Yao, H.B.; Yan, K.; Li, W.Y.; Zheng, G.Y.; Kong, D.S.; Seh, Z.W.; Narasimhan, V.K.; Liang, Z.; Cui, Y., Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface, Energy Environ. Sci., 2014, 7 (10), 3381. 19. Seh, Z.W.; Sun, Y.M.; Zhang, Q.F.; Cui, Y., Designing high-energy lithium-sulfur batteries, Chem. Soc. Rev., 2016, 45 (20), 5605. 20. Huang, J.Q.; Zhang, Q.; Wei, F., Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and prospects, Energy Storage Mater., 2015, 1, 127. 21. Wu, M.; Xiao, X.; Vukmirovic, N.; Xun, S.; Das, P.K.; Song, X.; Olalde-Velasco, P.; Wang, D.; Weber, A.Z.; Wang, L.-W., Toward an ideal polymer binder design for high-capacity battery anodes, J. Amer. Chem. Soc., 2013, 135 (32), 12048. 22. Liu, G.; Xun, S.; Vukmirovic, N.; Song, X.; Olalde-Velasco, P.; Zheng, H.; Battaglia, V.S.; Wang, L.; Yang, W., Polymers with tailored electronic structure for high capacity lithium battery electrodes, Adv. Mater., 2011, 23 (40), 4679. 23. Wang, C.; Wu, H.; Chen, Z.; McDowell, M.T.; Cui, Y.; Bao, Z., Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries, Nat. Chem., 2013, 5 (12), 1042. 24. Javier, A.E.; Patel, S.N.; Hallinan, D.T.; Srinivasan, V.; Balsara, N.P., Simultaneous electronic and ionic conduction in a block copolymer: Application in lithium battery electrodes, Angew. Chem. Inter. Ed., 2011, 50 (42), 9848. 25. Grzybowski, B.A.; Bishop, K.J.M.; Kowalczyk, B.; Wilmer, C.E., The “wired” universe of organic chemistry, Nat. Chem., 2009, 1 (1), 31. 26. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review, Energy Environ. Sci., 2011, 4 (9), 3243. 27. Liu, J.; Manthiram, A., Understanding the improvement in the electrochemical properties of surface modified 5 V LiMn1.42Ni0.42Co0.16O4 spinel cathodes in lithium-ion cells, Chem. Mater., 2009, 21 (8), 1695. 28. Cho, J.; Kim, Y.J.; Kim, T.-J.; Park, B., Zero-strain intercalation cathode for rechargeable Li-ion cell, Angew. Chem., 2001, 113 (18), 3471. 29. Alva, G.; Kim, C.; Yi, T.; Cook, J.; Xu, L.; Nolis, G.; Cabana, J., Surface chemistry consequences of Mg-based coatings on LiNi0.5Mn1.5O4 electrode materials upon operation at high voltage, J. Phys. Chem. C, 2014, DOI:10.1021/jp5003148 10.1021/jp5003148. 30. Miller, D.J.; Proff, C.; Wen, J.G.; Abraham, D.P.; Bareño, J., Observation of microstructural evolution in Li battery cathode oxide particles by in situ electron microscopy, Adv. Ener. Mat., 2013, 3 (8), 1098. 31. Park, J.S.; Meng, X.; Elam, J.W.; Hao, S.; Wolverton, C.; Kim, C.; Cabana, J., Ultrathin lithium-ion conducting coatings for increased interfacial stability in high voltage lithium-ion batteries, Chem. Mater., 2014, DOI:10.1021/cm500512n 10.1021/cm500512n. 32. Jung, Y.S.; Cavanagh, A.S.; Riley, L.A.; Kang, S.-H.; Dillon, A.C.; Groner, M.D.; George, S.M.; Lee, S.-H., Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries, Adv. Mater., 2010, 22 (19), 2172. 33. Chen, Y.-C.; Lin, Y.-G.; Hsu, Y.-K., Biomimicry of Cuscuta electrode design endows hybrid capacitor with ultrahigh energy density exceeding 2 mW h cm-2 at a power delivery of 25 mW cm-2, J. Mater. Chem. A, 2017, 5 (10), 4779. 34. Kim, C.; Phillips, P.J.; Xu, L.; Dong, A.; Buonsanti, R.; Klie, R.F.; Cabana, J., Stabilization of battery electrode/electrolyte interfaces employing nanocrystals with passivating epitaxial shells, Chem. Mater., 2014, 27 (1), 394. 35. Sun, Y.K.; Myung, S.T.; Park, B.C.; Prakash, J.; Belharouak, I.; Amine, K., High-energy cathode material for long-life and safe lithium batteries, Nat. Mater., 2009, 8 (4), 320. 20 PRIORITY RESEARCH DIRECTION – 1

PDF Image | Next Generation Electrical Energy Storage

PDF Search Title:

Next Generation Electrical Energy Storage

Original File Name Searched:

BRN-NGEES_rpt-low-res.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)