logo

Next Generation Electrical Energy Storage

PDF Publication Title:

Next Generation Electrical Energy Storage ( next-generation-electrical-energy-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 058

REPORT OF THE BASIC RESEARCH NEEDS WORKSHOP 16. Zhou, H.; Rouha, M.; Feng, G.; Lee, S.S.; Docherty, H.; Fenter, P.; Cummings, P.T.; Fulvio, P.F.; Dai, S.; McDonough, J.; Presser, V.; Gogotsi, Y., Nanoscale perturbations of room temperature ionic liquid structure at charged and uncharged interfaces. ACS Nano, 2012, 6, 9818. 17. Li, J.; Ma, C.; Chi, M.; Liang, C.; Dudney, N.J., Solid electrolyte: The key for high-voltage lithium batteries. Adv. Ener. Mater., 2015, 5, 1401408. 18. Cheng, E.J.; Sharafi, A.; Sakamoto, J., Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim. Acta, 2017, 223, 85-91. 19. Khurana, R.; Schaefer, J.L.; Archer, L.A.; Coates, G.W., Suppressed lithium dendrite growth using cross-linked solid polymer electrolytes: A step towards building safer lithium-metal polymer batteries. J. Amer. Chem. Soc., 2014, 136, 7395 . 20. Tu, Z.; Zachman, M.; Choudhury, S.; Wei, S.; Ma, L.; Yang, Y.; Kourkoutis, L.F.; Archer, L.A., Nanoporous hybrid electrolytes for high energy batteries based on reactive metal anodes. Adv. Ener. Mater., 2017, 7, 1602367. 21. Gao, H.; Lian, K., Proton-conducting polymer electrolytes and their applications in solid supercapacitors: A review. RSC Adv., 2014, 4, 33091. 22. Luntz, A C.; Voss, J.; Reuter, K., Interfacial challenges in solid-state Li ion batteries. J. Phys. Chem. Lett., 2015, 6, 4. 23. Wolf, D.; Lubk, A.; Lichte, H.; Friedrich, H., Towards automated electron holographic tomography for 3D mapping of electrostatic potentials. Ultramicroscopy, 2010, 110, 390. 24. Yamamoto, K.; Iriyama, Y.; Hirayama, T., Operando observations of solid-state electrochemical reactions in Li-ion batteries by spatially resolved TEM EELS and electron holography. Microscopy, 2016, 66, 50-61. 25. Yamamoto, K.; Iriyama, Y.; Asaka, T.; Hirayama, T.; Fujita, H.; Fisher, C.A.J.; Nonaka, K.; Sugita, Y.; Ogumi, Z., Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery. Ange. Chem. Inter. Ed., 2010, 49, 4414. 26. Hausbrand, R.; Becker, D.; Jaegermann, W., A surface science approach to cathode/electrolyte interfaces in Li-ion batteries: Contact properties, charge transfer and reactions. Prog. Solid-State Chem., 2014, 42, 175. 27. Masuda, H.; Ishida, N.; Ogata, Y.; Ito, D.; Fujita, D., Internal potential mapping of charged solid-state-lithium ion batteries using in situ Kelvin probe force microscopy. Nanoscale, 2017, 9, 893. 28. Fuller, E.J.; Talin, A.A., unpublished data (2017). 29. Arthur, T.S.; Glans, P.-A.; Matsui, M.; Zhang, R.; Ma, B.; Guo, J., Mg deposition observed by in situ electrochemical Mg K-edge X-ray absorption spectroscopy. Electrochem. Commun., 2012, 24, 43. 30. Benmayza, A.; Ramanathan, M.; Arthur, T.S.; Matsui, M.; Mizuno, F.; Guo, J.; Glans, P.-A.; Prakash, J., Effect of electrolytic properties of a magnesium organohaloaluminate electrolyte on magnesium deposition. J. Phys. Chem. C, 2013, 117, 26881. 31. Mehdi, B.L.; Qian, J.; Nasybulin, E.; Park, C.; Welch, D.A.; Faller, R.; Mehta, H.; Henderson, W.A.; Xu, W.; Wang, C.M.; Evans, J.E.; Liu, J.; Zhang, J.G.; Mueller, K.T.; Browning, N.D., Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett., 2015, 15, 2168. 32. Lim, J.; Li, Y.; Alsem, D.H.; So, H.; Lee, S.C.; Bai, P.; Cogswell, D.A.; Liu, X.; Jin, N.; Yu, Y.-S.; Salmon, N.J.; Shapiro, D.A.; Bazant, M.Z.; Tyliszczak, T.; Chueh, W.C., Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles. Science, 2016, 353, 566. 33. Park, J.; Elmlund, H.; Ercius, P.; Yuk, J.M.; Limmer, D.T.; Chen, Q.; Kim, K.; Han, S.H.; Weitz, D.A.; Zettl, A.; Alivisatos, A.P., 3D structure of individual nanocrystals in solution by electron microscopy. Science, 2015, 349, 290. 34. Shapiro, D.A.; Yu, Y. S.; Tyliszczak, T.; Cabana, J.; Celestre, R.; Chao, W.L.; Kaznatcheev, K.; Kilcoyne, A.L.D.; Maia, F.; Marchesini, S.; Meng, Y.S.; Warwick, T.; Yang, L.L.; Padmore, H.A., Chemical composition mapping with nanometre resolution by soft X-ray microscopy. Nat. Photonics, 2014, 8, 765. 35. Ulvestad, A.; Singer, A.; Cho, H.M.; Clark, J.N.; Harder, R.; Maser, J.; Meng, Y.S.; Shpyrko, O.G., Single particle nanomechanics in operando batteries via lensless strain mapping. Nano Letters, 2014, 14, 5123. 36. Come, J.; Xie, Y.; Naguib, M.; Jesse, S.; Kalinin, S.V.; Gogotsi, Y.; Kent, P.R.C.; Balke, N., Nanoscale elastic changes in 2D Ti3C2Tx(MXene) pseudocapacitive electrodes. Adv. Ener. Mater., 2016, 6, 1502290. 37. Cant, N.W.; Hicks, P.C.; Lennon, B.S., Steady-state oxidation of carbon monoxide over supported noble metals with particular reference to platinum. J. Catalysis, 1978, 54, 372. 38. Falconer, J.L.; Madix, R.J., Flash desorption activation energies: DCOOH decomposition and CO desorption from Ni (110). Surf. Sci., 1975, 48, 393. 39. Grenoble, D.C.; Estadt, M.M.; Ollis, D.F., The chemistry and catalysis of the water gas shift reaction. J. Catalysis, 1981, 67, 90. 40. Jernigan, G.G.; Somorjai, G.A., Carbon monoxide oxidation over three different oxidation states of copper: Metallic copper, copper (I) oxide, and copper (II) oxide - A surface science and kinetic study. J. Catalysis, 1994, 147, 567. 41. Nieuwenhuys, B.E., Adsorption and reactions of CO, NO, H2 and O2 on group VIII metal surfaces. Surf. Sci., 1983, 126, 307. 42. Browning, K.L.; Sacci, R.L.; Veith, G.M., Energetics of Na+ transport through the electrode/cathode interface in single solvent electrolytes. J. Electrochem. Soc., 2017, 164, A580 . 43. Manthiram, A.; Vadivel Murugan, A.; Sarkar, A.; Muraliganth, T., Nanostructured electrode materials for electrochemical energy storage and conversion. Ener. Environ. Sci., 2008, 1, 621. 44. Wei, S.; Choudhury, S.; Xu, J.; Nath, P.; Tu, Z.; Archer, L.A., Highly stable sodium batteries enabled by functional ionic polymer membranes. Adv. Mater., 2017, 29, 1605512. 45. Choudhury, S.; Wan, C.T-C.; Al Sadat, W.; Tu, Z.; Zachman, M.; Lau, S.; Kourkoutis, L.F.; Archer, L.A., Designer interphases for the lithium-oxygen electrochemical cell. Sci. Adv., 2017, 3, e1602809. 46. Kim, Y.J.; Cho, J.; Kim, T.-J.; Park, B., Suppression of cobalt dissolution from the LiCoO2 cathodes with various metal-oxide coatings. J. Electrochem. Soc., 2003, 150, A1723. 47. Darling, R.; Gallagher, K.; Xie, W.; Su, L.; Brushett, F., Transport property requirements for flow battery separators. J. Electrochem. Soc., 2015, 163, A5029. 48. Doris, S.E.; Ward, A.L.; Baskin, A.; Frischmann, P.D.; Gavvalapalli, N.; Chénard, E.; Sevov, C.S.; Prendergast, D.; Moore, J.S.; Helms, B.A., Macromolecular design strategies for preventing active-material crossover in non-aqueous all-organic redox-flow batteries. Ange. Chem. Inter. Ed., 2017, 56, 1595. 49. Janoschka, T.; Martin, N.; Martin, U.; Friebe, C.; Morgenstern, S.; Hiller, H.; Hager, M.D.; Schubert, U.S., An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature, 2015, 527, 78. 50. Lin, K.; Chen, Q.; Gerhardt, M.R.; Tong, L.; Kim, S.B.; Eisenach, L.; Valle, A.W.; Hardee, D.; Gordon, R.G.; Aziz, M.J.; Marshak, M.P., Alkaline quinone flow battery. Science, 2015, 349, 1529. 52 PRIORITY RESEARCH DIRECTION – 3

PDF Image | Next Generation Electrical Energy Storage

next-generation-electrical-energy-storage-058

PDF Search Title:

Next Generation Electrical Energy Storage

Original File Name Searched:

BRN-NGEES_rpt-low-res.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP