Next Generation Electrical Energy Storage

PDF Publication Title:

Next Generation Electrical Energy Storage ( next-generation-electrical-energy-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 059

51. Nagarjuna, G.; Hui, J.; Cheng, K.J.; Lichtenstein, T.; Shen, M.; Moore, J.S.; Rodríguez-López, J., Impact of redox-active polymer molecular weight on the electrochemical properties and transport across porous separators in nonaqueous solvents. J. Amer. Chem. Soc., 2014, 136, 16309. 52. Lin, D.; Liu, Y.; Cui, Y., Reviving the lithium metal anode for high-energy batteries. Nature Nanotech., 2017, 12, 194. 53. Tikekar, M.D.; Choudhury, S.; Tu, Z.; Archer, L.A., Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nature Energy, 2016, 1, 16114. 54. Delp, S.A.; Borodin, O.; Olguin, M.; Eisner, C.G.; Allen, J.L.; Jow, T.R., Importance of reduction and oxidation stability of high voltage electrolytes and additives. Electrochim. Acta, 2016, 209, 498. 55. Michan, A.L.; Parimalam, B.S.; Leskes, M.; Kerber, R.N.; Yoon, T.; Grey, C.P.; Lucht, B.L., Fluoroethylene carbonate and vinylene carbonate reduction: Understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation. Chem. Mater., 2016, 28, 8149. 56. Pinson, M.B.; Bazant, M.Z., Theory of SEI formation in rechargeable batteries: Capacity fade, accelerated aging and lifetime prediction. J. Electrochem. Soc., 2012, 160, A243. 57. Stevens, D.A.; Ying, R.Y.; Fathi, R.; Reimers, J.N.; Harlow, J.E.; Dahn, J.R., Using high precision coulometry measurements to compare the degradation mechanisms of NMC/LMO and NMC-only automotive scale pouch cells. J. Electrochem. Soc., 2014, 161, A1364. 58. Nie, M.; Chalasani, D.; Abraham, D.P.; Chen, Y.; Bose, A.; Lucht, B.L., Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy. J. Phys. Chem. C, 2013, 117, 1257. 59. Frischmann, P.D.; Hwa, Y.; Cairns, E.J.; Helms, B.A., Redox-active supramolecular polymer binders for lithium–sulfur batteries that adapt their transport properties in operando. Chem. Mater., 2016, 28, 7414. 60. Moucka, F.; Bratko, D.; Luzar, A., Electrolyte pore/solution partitioning by expanded grand canonical ensemble Monte Carlo simulation. J. Chem. Phys., 2015, 142, 124705. 61. Bani-Hashemian, M.H.; Brueck, S.; Luisier, M.; Vandevondele, J.A, generalized Poisson solver for first-principles device simulations. J. Chem. Phys., 2016, 144, 044113. 62. Fattebert, J.-L.; Gygi, F., First-principles molecular dynamics simulations in a continuum solvent. Int. J. Quantum Chem., 2003, 93, 139. 63. Andreussi, O.; Dabo, I.; Marzari, N., Revised self-consistent continuum solvation in electronic-structure calculations. J. Chem. Phys., 2012, 136, 064102 64. Tomasi, J.; Mennucci, B.; Cammi, R., Quantum mechanical continuum solvation models. Chem. Rev., 2005, 105, 2999. 65. Crumlin, E.J.; Liu, Z.; Bluhm, H.; Yang, W.; Guo, J.; Hussain, Z., X-ray spectroscopy of energy materials under in situ/operando conditions. J. Electron Spec. Rel. Phenom., 2015, 200, 264. 66. Lu, Y.-C.; Crumlin, E.J.; Veith, G.M.; Harding, J.R.; Mutoro, E.; Baggetto, L.; Dudney, N.J.; Liu, Z.; Shao-Horn, Y., In situ ambient pressure X-ray photoelectron spectroscopy studies of lithium-oxygen redox reactions. Sci. Reports, 2012, 2, 715. 67. Arthur, T.S.; Glans, P.A.; Matsui, M.; Zhang, R.G.; Ma, B.W.; Guo, J.H., Mg deposition observed by in situ electrochemical Mg K-edge X-ray absorption spectroscopy. Electrochem. Commun., 2012, 24, 43. 68. Benmayza, A.; Ramanathan, M.; Arthur, T.S.; Matsui, M.; Mizuno, F.; Guo, J.H.; Glans, P.A.; Prakash, J., Effect of electrolytic properties of a magnesium organohaloaluminate electrolyte on magnesium deposition. J. Phys. Chem. C., 2013, 117, 26881. 69. Lim, J.; Li, Y.; Alsem, D.H.; So, H.; Lee, S.C.; Bai, P.; Cogswell, D.A.; Liu, X.; Jin, N.; Yu, Y.-S.; Salmon, N.J.; Shapiro, D.A.; Bazant, M.Z.; Tyliszczak, T.; Chueh, W.C., Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles. Science, 2016, 353, 566. 70. Axnanda, S.; Crumlin, E.; Mao, B.; Rani, S.; Chang, R.; Karlsson, P.G.; Edwards, M.O.M.; Lundqvist, M.; Moberg, R.; Ross, P.; Hussain, Z.; Liu, Z., Using “tender” X-ray ambient pressure X-ray photoelectron spectroscopy as a direct probe of solid-liquid interface. Sci. Reports, 2015, 5, 9788. 71. Favaro, M.; Jeong, B.; Ross, P.N.; Yano, J.; Hussain, Z.; Liu, Z.; Crumlin, E.J., Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nature Commun., 2016, 7, 12695. 72. Liu, X. S.; Wang, D.D.; Liu, G.; Srinivasan, V.; Liu, Z.; Hussain, Z.; Yang, W.L., Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy. Nature Commun., 2013, 4, 2568. 73. Philippe, B.; Dedryvère, R.; Allouche, J.; Lindgren, F.; Gorgoi, M.; Rensmo, H.; Gonbeau, D.; Edström, K., Nanosilicon electrodes for lithium-ion batteries: Interfacial mechanisms studied by hard and soft X-ray photoelectron spectroscopy. Chem. Mater., 2012, 24, 1107. 74. Young, B.T.; Heskett, D.R.; Nguyen, C.C.; Nie, M.; Woicik, J.C.; Lucht, B.L., Hard X-ray photoelectron spectroscopy (HAXPES) investigation of the silicon solid electrolyte interphase (SEI) in lithium-ion batteries. ACS Appl. Mater. Interfaces, 2015, 7, 20004. 75. Fan, L.; Zhuang, H.L.L.; Gao, L.N.; Lu, Y.Y.; Archer, L.A., Regulating Li deposition at artificial solid electrolyte interphases. J. Mater. Chem. A, 2017, 5, 3483. 76. Ward, A.L.; Doris, S.E.; Li, L.; Hughes, M.A.; Qu, X.; Persson, K.A.; Helms, B.A., Materials genomics screens for adaptive ion transport behavior by redox-switchable microporous polymer membranes in lithium–sulfur batteries. ACS Central Science, 2017, 3, 399. 77. Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Wei, F.; Zhang, J.-G.; Zhang, Q., A review of solid electrolyte interphases on lithium metal anode. Adv. Sci., 2015, 3, 1500213. 78. Veith, G.M.; Doucet, M.; Baldwin, J.; Sacci, R.L.; Fears, T.M.; Wang, Y.; Browning, J.F., Direct determination of solid-electrolyte interphase thickness and composition as a function of state of charge on a silicon anode. J. Phys. Chem. C, 2015, 119, 20339-20349. 79. Browning, J.F.; Baggetto, L.; Jungjohann, K.L.; Wang, Y.; Tenhaeff, W.E.; Keum, J.K.; Wood, III, D.L.; Veith, G.M., In situ determination of the liquid/ solid interface thickness and composition for the Li ion cathode LiMn1.5Ni0.5O4, ACS Appl. Mater. Interfaces. 2014, 6 (21), 18569-18576. 80. Veith, G.M.; Baggettto, B.; Sacci, R.L.; Unocic, R.R.; Tenhaeff, W.E.; Browning, J.F., Direct measurement of the chemical reactivity of silicon electrodes with LiPF6-based battery electrolytes. Chem. Commun., 2014, 50 (23), 3081-3084. 81. Qian, J.; Adams, B.D.; Zheng, J.; Xu, W.; Henderson, W.A.; Wang, J.; Bowden, M.E.; Xu, S.; Hu, J. ; Zhang, J.-G., Anode-free rechargeable lithium metal batteries. Adv. Funct. Mater., 2016, 26, 7094. 82. Kozen, A.C.; Lin, C.-F.; Pearse, A.J.; Schroeder, M.A.; Han, X.; Hu, L.; Lee, S.-B.; Rubloff, G.W.; Noked, M., Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano, 2015, 9, 5884. 83. Cao, Y.; Meng, X.; Elam, J.W.. Atomic layer deposition of LixAlyS solid-state electrolytes for stabilizing lithium-metal anodes. ChemElectroChem, 2006, 3, 858. 84. Belov, D.G.; Yarmolenko, O.V.; Peng, A.; Efimov, O.N., Lithium surface protection by polyacetylene in situ polymerization. Synthetic Metals, 2006, 156, 745. 85. Zheng, G.; Lee, S. W.; Liang, Z.; Lee, H.-W.; Yan, K.; Yao, H.; Wang, H.; Li, W.; Chu, S.; Cui, Y., Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nature Nanotech., 2014, 9, 618. NEXT GENERATION ELECTRICAL ENERGY STORAGE PRIORITY RESEARCH DIRECTION – 3 53

PDF Image | Next Generation Electrical Energy Storage

PDF Search Title:

Next Generation Electrical Energy Storage

Original File Name Searched:

BRN-NGEES_rpt-low-res.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)