logo

Next Generation Electrical Energy Storage

PDF Publication Title:

Next Generation Electrical Energy Storage ( next-generation-electrical-energy-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 069

28. Pan, H.; Wei, X.; Henderson, W.A.; Shao, Y.; Chen, J.; Bhattacharya, P.; Xiao, J.; Liu, J., On the way toward understanding solution chemistry of lithium polysulfides for high energy Li-S redox flow batteries, Adv. Energy Mater., 2015, 5 (16), 1500113. 29. Yang, Y.; Zheng, G.; Cui, Y., A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage, Ener. Environ. Sci., 2013, 6 (5): 1552-1558. 30. Li, N.; Weng, Z.; Wang, Y.; Li, F.; Cheng, H.M.; Zhou, H., An aqueous dissolved polysulfide cathode for lithium-sulfur batteries, Ener. Environ. Sci., 2014, 7 (10), 3307-3312. 31. Han, K.S.; Rajput, N.N.; Vijayakumar, M.; Wei, X.; Wang, W.; Hu, J.; Persson, K.A.; Mueller, K.T., Preferential solvation of an asymmetric redox molecule, J. Phys. Chem. C, 2016, 120 (49), 27834-27839. 32. Park, M.; Ryu, J.; Wang, W.; Cho, J., Material design and engineering of next-generation flow-battery technologies, Nature Rev. Mater., 2016, 2, 16080. 33. Zhao, Y.; Ding, Y.; Li, Y.; Peng, L.; Byon, H.R.; Goodenough, J.B.; Yu, G., A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage, Chem. Soc. Rev., 2015, 44 (22), 7968-7996. 34. Ding, Y.; Li, Y.; Yu, G., Exploring bio-inspired quinone-based organic redox flow batteries: A combined experimental and computational study, Chem, 2016, 1 (5), 790-801. 35. Janoschka, T.; Martin, N.; Martin, U.; Friebe, C.; Morgenstern, S.; Hiller, H.; Hager, M.D.; Schubert, U.S., An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials, Nature, 2015, 527 (7576), 78-81. 36. Ward, A.L.; Doris, S.E.; Li, L.; Hughes, M.A.; Qu, X.; Persson, K.A.; Helms, B.A., Materials genomics screens for adaptive ion transport behavior by redox-switchable microporous polymer membranes in lithium-sulfur batteries, ACS Cent.Sci., 2017, 3, 399−406, DOI: 10.1021/acscentsci.7b00012. 37. Wei, X.; Cosimbescu, L.; Xu, W.; Hu, J.Z.; Vijayakumar, M.; Feng, J.; Hu, M.Y.; Deng, X.; Xiao, J.; Liu, J.; Sprenkle, V.; Wang, W., Towards high- performance nonaqueous redox flow electrolyte via ionic modification of active species, Adv. Energy Mater., 2015, 5 (1), 1400678. 38. Sevov, C.S.; Brooner, R.E.M.; Chénard, E.; Assary, R.S.; Moore, J.S.; Rodríguez-López, J.; Sanford, M.S., Evolutionary design of low molecular weight organic anolyte materials for applications in nonaqueous redox flow batteries, J. Amer. Chem. Soc., 2015, 137 (45), 14465-14472. 39. Ding, Y.; Zhao, Y.; Li, Y.; Goodenough, J.B.; Yu, G., A high-performance all-metallocene-based, non-aqueous redox flow battery. Ener. Environ. Sci., 2017, 10 (2), 491-497. 40. Yang, Z.; Zhang, J.; Kintner-Meyer, M.C.W.; Lu, X.; Choi, D.; Lemmon, J.P.; Liu, J., Electrochemical energy storage for green grid, Chem. Rev., 2011, 111 (5), 3577-3613. 41. Winsberg, J.; Hagemann, T.; Janoschka, T.; Hager, M.D.; Schubert, U.S., Redox-flow batteries: From metals to organic redox-active materials, Angew. Chem. Int. Ed., 2017, 56, 686-711. 42. Nagarjuna, G.; Hui, J.; Cheng, K.J.; Lichtenstein, T.; Shen, M.; Moore, J.S.; Rodríguez-López, J., Impact of redox-active polymer molecular weight on the electrochemical properties and transport across porous separators in nonaqueous solvents, J. Am. Chem. Soc., 2014, 136, 16309−16316, DOI: 10.1021/ja508482e. 43. Vijayakumar, M.; Luo, Q.; Lloyd, R.; Nie, Z.; Wei, X.; Li, B.; Sprenkle,V.; Londono, J.-D.; Unlu, M.; Wang, W., Tuning the perfluorosulfonic acid membrane morphology for vanadium redox-flow batteries, ACS Appl. Mater. Interfaces, 2016, 8 (50), 34327-34334. NEXT GENERATION ELECTRICAL ENERGY STORAGE PRIORITY RESEARCH DIRECTION – 4 63

PDF Image | Next Generation Electrical Energy Storage

next-generation-electrical-energy-storage-069

PDF Search Title:

Next Generation Electrical Energy Storage

Original File Name Searched:

BRN-NGEES_rpt-low-res.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP