Next Generation Electrical Energy Storage

PDF Publication Title:

Next Generation Electrical Energy Storage ( next-generation-electrical-energy-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 082

REPORT OF THE BASIC RESEARCH NEEDS WORKSHOP 26. Komatsu, H.; Arai, H.; Koyama, Y.; Sato, K.; Kato, T.; Yoshida, R.; Murayama, H.; Takahashi, I.; Orikasa, Y.; Fukuda, K.; Hirayama, T.; Ikuhara, Y.; Ukyo, Y.; Uchimoto, Y.; Ogumi, Z., Solid solution domains at phase transition front of LixNi0.5Mn1.5O4, Adv. Energy Mater., 2015, 5, 1500638, DOI: 10.1002/ aenm.201500638. 27. Leenheer, A.J.; Jungjohann, K.L.; Zavadil, K.R.; Harris, C.T., Phase boundary propagation in Li-alloying battery electrodes revealed by liquid-cell transmission electron microscopy, ACS Nano, 2016, 10, 5670-5678, DOI: 10.1021/acsnano.6b02200. 28. Williford, R.E.; Viswanathan, V.V.; Zhang, J.-G., Effects of entropy changes in anodes and cathodes on the thermal behavior of lithium ion batteries, J. Power Sources, 2009, 189, 101-107, DOI: 10.1016/j.jpowsour.2008.10.078. 29. Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G., Lithium metal anodes for rechargeable batteries, Energy Environ. Sci., 2014, 7, 513-537; DOI: 10.1039/C3EE40795K. 30. Krasniqi, F.; Najjari, B.; Strüder, L.; Rolles, D.; Voitkiv, A.; Ullrich, J., Imaging molecules from within: Ultrafast angström-scale structure determination of molecules via photoelectron holography using free-electron lasers, Phys. Rev., 2010 A, 81, DOI:10.1103/PhysRevA.81.03341. 31. Xu, J.; Blaga, C.I; Agostini, P.; DiMauro, L.F., Time-resolved molecular imaging, J. Phys. B: At. Mol. Opt. Phys., 2016, 49, 112001, DOI: 10.1088/0953- 4075/49/11/112001. 32. Tikekar, M.D.; Choudhury, S.; Tu, Z.; Archer, L.A., Design principles for electrolytes and interfaces for stable lithium-metal batteries, Nature Ener., 2016, 1, 1-7, DOI:10.1038/NENERGY.2016.114. 33. Lin, D.; Liu, Y.; Cui, X., Reviving the lithium metal anode for high-energy batteries, Nature Nanotech., 2017, 12, 194-206, DOI: 10.1038/ nnano.2017.16. 34. Cheng, J.-H.; Assegie, A.A.; Huang, C.-J.; Lin, M.-H.; Tripathi, A.M.; Wang, C.-C.; Tang, M.-T.; Song, Y.F.; Su, W.-N.; Hwang, B.J., Visualization of lithium plating and stripping via in operando transmission X-ray microscopy, J. Phys. Chem. C, 2017, 121, 7761-7766, DOI: 10.1021/acs.jpcc.7b01414. 35. Wood, K. N.; Kazyak, E.; Chadwick, A.F.; Chen, K.-H.; Zhang, J.-G.; Thornton, K.; Dasgupta, N.P., Dendrites and pits: Untangling the complex behavior of lithium metal anodes through operando video microscopy, ACS Cent. Sci., 2016, 2, 790-801, DOI: 10.1021/acscentsci.6b00260. 36. Yan, P.; Zheng, J.; Gu, M.; Xi, J.; Zhang, J.-G.; Wang, C.M., Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries, Nature Commun., 2017, 8, 14101, DOI: 10.1038/ncomms14101. 37. Su, X.; Wu, Q; Li, J.; Xiao, X.; Lott, A.; Lu, W.; Sheldon, B.W.; Wu, J., Silicon-based nanomaterials for lithium-ion batteries: A review, Adv. Energy Mater., 2014, 4, 1300882, DOI: 10.1002/aenm.201300882. 38. Bak, S.-M.; Nam, K.-W.; Chang, W.; Yu, X.; Hu, E.; Hwang, S.; Stach, E.A.; Kim, K.-B.; Chung, K.Y.; Yang, X.-Q., Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials, Chem. Mater., 2013, 25, 337-351, DOI: 10.1021/ cm303096e. 39. Finegan, D.P.; Scheel, M.; Robinson, J.B.; Tjaden, B.; Hunt, I.; Mason, T.J.; Millichamp, J.; Di Michie, M.; Offer, G.J.; Hinds, G.; Brett, D.J.L; Shearing, P.R., In-operando high-speed tomography of lithium-ion batteries during thermal runaway, Nature Commun., 2015, 6, 6924, DOI: 10.1038/ ncomms7924. 40. Ostoby, D.W., Homogeneous nucleation: Theory and experiment, J. Phys. Condens. Mater., 1992, 4, 7627-7650, DOI: 10.1088/0953- 8984/4/38/001. 41. Leenheer, A.J.; Jungjohann, K.L.; Zavadil, K.R.; Harris, C.T., Phase boundary propagation in Li-alloying battery electrodes revealed by liquid-cell transmission electron microscopy, ACS Nano, 2016, 10, 5670-5678, DOI: 10.1021/acsnano.6b02200. 42. de Jonge, N.; Ross, F.M., Electron microscopy of specimens in liquid, Nature Nanotech., 2011, 6, 695-704, DOI:10.1038/nnano.2011.161. 43. Hertzberg, R.W.; Vinci, R.P.; Hertzberg, J.L., Deformation and Fracture Mechanics of Engineering Materials, 5th Edition, Wiley, 2012. 44. Kupper, C.; Bessler, W.G., Multi-scale thermo-electrochemical modeling of performance and aging of a LiFePO4/graphite lithium-ion cell, J. Electrochem. Soc., 2017, 164, A304-A320, DOI: 10.1149/2.0761702jes. 45. Ashwin, T.R.; Chung, Y.M.; Wang, J., Capacity fade modelling of lithium-ion battery under cyclic loading conditions, J. Power Sources, 2016, 328, 586-598, DOI: 10.1016/j.jpowsour.2016.08.054. 46. Pinson, M.B.; Bazant, M.Z., Theory of SEI formation in rechargeable batteries: Capacity fade, accelerated aging and lifetime prediction, J. Electrochem. Soc., 2013, 160, A243-A250, DOI: 10.1149/2.044302jes. 47. Haftbaradaran, H.; Maddahian, A.; Mossaiby, F., A fracture mechanics study of the phase separating planar electrodes: Phase field modeling and analytical results, J. Power Sources, 2017, 350, 127-139, DOI: 10.1016/j.jpowsour.2017.03.073. 48. Raj, R.; Wolfenstine, J., Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries, J. Power Sources, 2017, 343, 119-126, DOI: 10.1016/j.jpowsour.2017.01.037. 49. Akolkar, R., Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature, J. Power Sources, 2014, 246, 84-89, DOI: 10.1016/j.jpowsour.2013.07.056. 50. Tan, T.; Ryan, E.M., Computational study of electro-convection effects on dendrite growth in batteries, J. Power Sources, 2016, 323, 67-77, DOI: 10.1016/j.jpowsour.2016.05.012. 51. Abraham, A.; Housel, L.M.; Lininger, C.N.; Bock, D.C.; Jou, J.; Wang, F.; West, A.C.; Marschilok, A.C.; Takeuchi, K.J.; Takeuchi, E.S., Investigating the complex chemistry of functional energy storage systems: The need for an integrative, multiscale (molecular to mesoscale) perspective, ACS Cent. Sci., 2016, 2, 380-387, DOI: 10.1021/acscentsci.6b00100. 52. Li, X.; Huang, J.; Faghir, A., A critical review of macroscopic modeling studies on LiO2 and Li-air batteries using organic electrolyte: Challenges and opportunities, J. Power Sources, 2016, 332, 420-446, DOI: 10.1016/j.jpowsour.2016.09.127. 53. Crabtree, G.; Kocs, E.; Trahey, L., The energy-storage frontier: Lithium-ion batteries and beyond, MRS Bulletin, 2015, 40, 1067-1076, DOI 10.1557/ mrs.2015.259. 76 PRIORITY RESEARCH DIRECTION – 5

PDF Image | Next Generation Electrical Energy Storage

PDF Search Title:

Next Generation Electrical Energy Storage

Original File Name Searched:

BRN-NGEES_rpt-low-res.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)