Next Generation Electrical Energy Storage

PDF Publication Title:

Next Generation Electrical Energy Storage ( next-generation-electrical-energy-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 096

REPORT OF THE BASIC RESEARCH NEEDS WORKSHOP desired stability, solvation structures, and long-range transport properties. In particular, new computational and experimental tools, including in situ and operando characterization techniques, are needed to qualitatively and quantitatively describe the kinetic processes of SEI formation and to explain the structures and properties on both the molecular and mesoscale. ab Figure 3.1.6. (a) Improved interfacial stability in non-aqueous superconcentrated electrolyte. From Ref. 15. Reproduced with permission of American Chemical Society. (b) Illustration of Li dendrite prevention mechanisms via the use of an additive containing large cations (Cs+). From Ref. 74. 3.1.3 IMPACT The research areas outlined in this panel report are central to the pursuit of electrochemical energy storage with high energy density and power capability. Focused research efforts on new energy storage architectures, multi- functional materials, the electrochemistry of novel molecular and materials-based flow systems, and improved understanding of interphases and electrolytes are key to advancing fundamental science and realizing game- changing energy storage systems. 3.1.4 REFERENCES 1. Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. High-Power All-Solid-State Batteries Using Sulfide Superionic Conductors. Nature Energy, 2016, 1, 1-7, DOI: 10.1038/nenergy.2016.30. 2. Braun, P.V.; Cho, J.; Pikul, J.H.; King, W.P.; Zhang, H., High Power Rechargeable Batteries. Curr. Opin. Solid State Mater. Sci., 2012, 16, 186-198, DOI: 10.1016/j.cossms.2012.05.002. 3. Liu, J., Charging Graphene for Energy. Nature Nanotechnol.. 2014, 9, 739-741, DOI: 10.1038/nnano.2014.233. 4. Sherrill, S.A.; Banerjee, P.; Rubloff, G.W.; Lee, S.B., High to Ultra-High Power Electrical Energy Storage. Phys. Chem. Chem. Phys., 2011, 13, 20714-20723, DOI: 10.1039/C1CP22659B. 5. Murugan, R.; Thangadurai, V.; Weppner, W., Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12. Ang. Chem. Int. Ed., 2007, 46, 7778-7781, DOI: 10.100ka2/anie.200701144. 6. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A., A Lithium Superionic Conductor. Nature Mater., 2011, 10, 682-686, DOI: 10.1038/nmat3066. 7. Bron, P.; Johansson, S.; Zick, K.; Schmedt auf der Günne, J.; Dehnen, S.; Roling, B., Li10SnP2S12: An Affordable Lithium Superionic Conductor. J. Am. Chem. Soc., 2013, 135, 15694-15697, DOI: 10.1021/ja407393y. 8. Manthiram, A.; Yu, X.; Wang, S. Lithium Battery Chemistries Enables by Solid-State Electrolytes. Nat. Rev. Mater., 2017, 2, 16103, DOI: 10.1038/ natrevmats.2016.103. 9. Han, X.; Gong, Y.; Fu, K.; He, X.; Hitz, G.T.; Dai, J.; Pearse, A.; Liu, B.; Wang, H.; Rubloff, G.; Mo, Y.; Thangadurai, V.; Wachsman, E.D.; Hu, L., Negating Interfacial Impedance in Garnet-Based Solid-State Li Metal Batteries. Nature Mater., 2016, 16, 572-579, DOI: 10.1038/nmat4821. 10. Pikul, J.H.; Gang Zhang, H.; Cho, J.; Braun, P.V.; King, W.P., High-Power Lithium Ion Microbatteries from Interdigitated Three-Dimensional Bicontinuous Nanoporous Electrodes. Nature Commun., 2013, 4, 1732, DOI: 10.1038/ncomms2747. 11. Liu, C.; Gillette, E.I.; Chen, X.; Pearse, A.I.; Kozen, A.C.; Schroeder, M.A.; Gregorczyk, K.E.; Lee, S.B.; Rubloff, G.W., An All-in-One Nanopore Battery Array, Nature Nanotechnol., 2014, 9, 1031-1039, DOI:10.1038/nnano.2014.247. 12. Sander, J.S.; Erb, R.M.; Li, L.; Gurijala, A.; Chiang, Y.-M., High-Performance Battery Electrodes Via Magnetic Templating. Nature Energy, 2016, 1, 16099, DOI: 10.1038/nenergy.2016.99. 13. Liu, N.; Lu, Z.; Zhao, J.; McDowell, M.T.; Lee, H.-W.; Zhao, W.; Cui, Y., A Pomegranate-Inspired Nanoscale Design for Large-Volume-Change Lithium Battery Anodes. Nature Nanotechnol., 2014, 9, 187-192, DOI: 10.1038/nnano.2014.6. 14. Xiao, J.; Mei, D.; Li, X.; Xu, W.; Wang, D.; Graff, G.L.; Bennett, W.D.; Nie, Z.; Saraf, L.V.; Aksay, I.A.; Liu, J.; Zhang, J.-G., Hierarchically Porous Graphene as a Lithium–Air Battery Electrode. Nano Lett., 2011, 11, 5071-5078, DOI: 10.1021/nl203332e. 15. Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A., Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries. J. Am. Chem. Soc., 2014, 136, 5039-5046, DOI: 10.1021/ja412807w. 90 PANEL 1 REPORT

PDF Image | Next Generation Electrical Energy Storage

PDF Search Title:

Next Generation Electrical Energy Storage

Original File Name Searched:

BRN-NGEES_rpt-low-res.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)