logo

Next Generation Electrical Energy Storage

PDF Publication Title:

Next Generation Electrical Energy Storage ( next-generation-electrical-energy-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 133

69. Shete, M.; Kumar, M.; Kim, D.H.; Rangnekar, N.; Xu, D.D.; Topuz, B.; Agrawal, K.V.; Karapetrova, E.; Stottrup, B.; Al-Thabaiti, S.; Basahel, S.; Narasimharao, K.; Rimer, J.D.; Tsapatsis, M., Nanoscale control of homoepitaxial growth on a two-dimensional zeolite, Angew. Chem.-Int. Ed., 2017, 56 (2), 535. 70. Lupulescu, A.I.; Rimer, J.D., In situ imaging of silicalite-1 Surface growth reveals the mechanism of crystallization, Science, 2014, 344 (6185), 729. 71. Ceder, G.; Hautier, G.; Jain, A.; Ong, S.P., Recharging lithium battery research with first-principles methods, MRS Bulletin, 2011, 36 (3), 185. 72. Canepa, P.; Gautam, G.S.; Hannah, D.C.; Malik, R.; Liu, M.; Gallagher, K.G.; Persson, K.A.; Ceder, G., Odyssey of multivalent cathode materials: Open questions and future challenges, Chem. Rev., 2017, 117 (5), 4287. 73. Aydinol, M.K.; Kohan, A.F.; Ceder, G.; Cho, K.; Joannopoulos, J., Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides, Phys. Rev. B, 1997, 56, 1354. 74. Leung, K., Predicting the voltage dependence of interfacial electrochemical processes at lithium-intercalated graphite edge planes, Phys. Chem. Chem. Phys., 2015, 17, 1637. 75. Korth, M., Large-scale virtual high-throughput screening for the identification of new battery electrolyte solvents: Evaluation of electronic structure theory methods, Phys. Chem. Chem. Phys., 2014, 16 (17), 7919. 76. Chan, M.K.Y.; Wolverton, C.; Greeley, J.P., First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon, J. Amer. Chem. Soc., 2012, 134 (35), 14362. 77. Kriston, A.; Pfrang, A.; Boon-Brett, L., Development of multi-scale structure homogenization approaches based on modeled particle deposition for the simulation of electrochemical energy conversion and storage devices, Electrochim. Acta, 2016, 201, 380. 78. Barai, P.; Mukherjee, P.P., Stochastic analysis of diffusion induced damage in lithium-ion battery electrodes, J. Electrochem. Soc., 2013, 160 (6), A955. 79. Newman, J.; Thomas, K.E.; Hafezi, H.; Wheeler, D.R., Modeling of lithium-ion batteries, J. Power Sources, 2003, 119, 838. 80. Franco, A.A., Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges, RSC Adv., 2013, 3 (32), 13027. 81. Kim, G.H.; Smith, K.; Ireland, J.; Pesaran, A., Fail-safe design for large capacity lithium-ion battery systems, J. Power Sources, 2012, 210, 243. 82. Stephenson, D.E.; Walker, B.C.; Skelton, C.B.; Gorzkowski, E.P.; Rowenhorst, D.J.; Wheeler, D.R., Modeling 3D microstructure and ion transport in porous Li-ion battery electrodes, J. Electrochem. Soc., 2011, 158 (7), A781. 83. Pannala, S.; Turner, J.A.; Allu, S.; Elwasif, W.R.; Kalnaus, S.; Simunovic, S.; Kumar, A.; Billings, J.J.; Wang, H.; Nanda, J., Multiscale modeling and characterization for performance and safety of lithium-ion batteries, J. Appl. Phys., 2015, 118 (7), 14. 84. Rao, R.P.; Gu, W.; Sharma, N.; Peterson, V.K.; Avdeev, M.; Adams, S., In situ neutron diffraction monitoring of Li7La3Zr2O12 formation: Toward a rational synthesis of garnet solid electrolytes, Chem. Mat., 2015, 27 (8), 2903. 85. Bai, J.; Hong, J.; Chen, H.; Graetz, J.; Wang, F., Solvothermal synthesis of LiMn1–xFexPO4 cathode materials: A study of reaction mechanisms by time-resolved in situ synchrotron X-ray diffraction, J. Phys. Chem. C, 2015, 119 (5), 2266. 86. Chen, Y.; Rangasamy, E.; Liang, C.; An, K., Origin of high Li+ conduction in doped Li7La3Zr2O12 garnets, Chem. Mat., 2015, 27 (16), 5491. 87. Donakowski, M.D.; Wallace, J.M.; Sassin, M.B.; Chapman, K.W.; Parker, J.F.; Long, J.W.; Rolison, D.R., Crystal engineering in 3D: Converting nanoscale lamellar manganese oxide to cubic spinel while affixed to a carbon architecture, CrystEngComm, 2016, 18 (32), 6035. 88. Zhou, S.L.; Barim, G.; Morgan, B.J.; Melot, B.C.; Brutchey, R.L., Influence of rotational distortions on Li+ and Na+-intercalation in anti-NASICON Fe2(MoO4)3, Chem. Mat., 2016, 28 (12), 4492. 89. Barim, G.; Cottingham, P.; Zhou, S.L.; Melot, B.C.; Brutchey, R.L., Investigating the mechanism of reversible lithium insertion into anti-NASICON Fe2(MoO4)3, ACS Appl. Mater. Interfaces, 2017, 9 (12), 10813. 90. Long, A.W.; Zhang, J.; Granick, S.; Ferguson, A.L., Machine learning assembly landscapes from particle tracking data, Soft Matter, 2015, 11 (41), 8141. 91. Revard, B.C.; Tipton, W.W.; Yesypenko, A.; Hennig, R.G., Grand-canonical evolutionary algorithm for the prediction of two-dimensional materials, Phys. Rev. B, 2016, 93 (5), 054117. NEXT GENERATION ELECTRICAL ENERGY STORAGE PANEL 4 REPORT 127

PDF Image | Next Generation Electrical Energy Storage

next-generation-electrical-energy-storage-133

PDF Search Title:

Next Generation Electrical Energy Storage

Original File Name Searched:

BRN-NGEES_rpt-low-res.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP