Next Generation Electrical Energy Storage

PDF Publication Title:

Next Generation Electrical Energy Storage ( next-generation-electrical-energy-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 147

Altogether, a concerted effort to close current knowledge gaps through multi-disciplinary fundamental research will accelerate the maturation of solid-state battery technology. Given the current state of the development in combination with the current level of commercial interest, it is possible that overcoming the fundamental barriers described above will have significant technological impact. 3.5.4 REFERENCES 1. Dudney, N.J.; West, W.C.; Nanda J., Handbook of Solid-State Batteries and Super Capacitors, World Scientific (2014). 2. Takada, K., Progress and prospective of solid-state lithium batteries, Acta Mater., 2013, 61, 759-770, http://dx.doi.org/10.1016/j.actamat.2012.10.034. 3. Lee, S.Y., Note 7 fiasco could burn a $17 billion hole in Samsung accounts, http://www.reuters.com/article/us-samsung-elec-smartphones- costsidUSKCN12B0FX (2016). 4. Rolison, D.R.; Long, J.W.; Lytle, J.C.; Fischer, A.E.; Rhodes: C.P.; McEvoy, T.M.; Bourg, M.E.; Lubers, A.M., Multifunctional 3D nanoarchitectures for energy storage and conversion, Chem. Soc. Rev., 2009, 38, 226-252, DOI: 10.1039/B801151F. 5. Sakamoto, J.; Dunn, B., Hierarchical battery electrodes based on inverted opal structures, J. Mater. Chem., 2002, 12, 859-861, DOI:10.1039/ B205634H. 6. Kotobuki, M.; Suzuki, Y.; Kanamura. K.; Sato, Y.; Yamamoto, K.; Yoshida, T., A novel structure of ceramics electrolyte for future lithium battery, J. Power Sources, 2011, 196, 9815-9819, doi.org/10.1016/j.jpowsour.2011.07.005. 7. Luntz, A.C.; Voss, J.; Reuter, K., Interfacial challenges in solid-state Li ion batteries, J. Phys. Chem. Lett., 2015, 6, 4599-4604. 8. Manthiram, A.; Yu, X.; Wang, S., Lithium battery chemistries enabled by solid-state electrolytes, Nature Rev. Mater., 2017, 2, 16103, DOI: 10.1038/natrevmats.2016.103. 9. Faraday, M., Experimental Researches in Electricity, Taylor and Francis (1839). 10. Nernst, W., Mutter Erde, Spemann, Berlin, Vol. 2, pp. 192 and 367 (1899). 11. Tubandt, C.; Lorenz, E., Molekularzustand und elektrisches Leitvermögen kristallisierter Salze, Z. Phys. Chem., 1914, 24, 513–543. 12. Owens B.B., Advances in Electrochemistry and Electrochemical Engineering, Wiley-Interscience, Vol. 8, p. 1 (1971). 13. Owens, B.B., Solid state electrolytes: Overview of materials and applications during the last third of the twentieth century, J. Power Sources, 2000, 90, 2-8, DOI:10.1016/S0378-7753(00)00436-5. 14. Owens B.B.; Oxley J.E.; Sammels A.F., Solid Electrolytes, Springer, Berlin, p. 67, DOI:10.1007/3540083383_4 (1977). 15. Kummer, J.T.; Arbor, A.; Weber, N., Thermo-electric generator, US patent 3,458,356 (1969). 16. Goodenough, J.B.; Hong, H.Y.-P.; Kafalas, J.A., Fast Na+-ion transport in skeleton structures, Mater. Res. Bull., 1976, 11, 203-220. 17. Oshima, T.; Kajita, M.; Okuno, A., Development of sodium-sulfur batteries, Int. J. App. Ceram. Tech., 2005, 1, 269-276, DOI:10.1111/j.1744-7402.2004. tb00179.x. 18. Bates, J.B.; Dudney, N.J.; Neudecker, B.; Ueda, A.; Evans, C.D., Thin-film lithium and lithium-ion batteries, Solid State Ionics, 2000, 135, 33-45. 19. Trask, J.; Anapolsky, A.; Cardozo, B.; Januar, E.; Kumar, K.; Miller, M.; Brown, R.; Bhardwaj, R., Optimization of 10-μm, sputtered, LiCoO2 cathodes to enable higher energy density solid state batteries, J. Power Sources, 2017, 350, 56-64. 20. Infinite Power Solutions, Solid-state, flexible, rechargeable thin-film micro-energy cell, http://media.digikey.com/pdf/Data%20Sheets/Infinite%20 Power%20Solutions%20PDFs/MEC202.pdf (2012). 21. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A., A lithium superionic conductor, Nature Mater., 2011, 10, 682-686, DOI:10.1038/nmat3066. 22. Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M., New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses, Adv. Mater., 2005, 17, 918-921, DOI: 10.1002/adma.200401286. 23. Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R., High-power all-solid-state batteries using sulfide superionic conductors, Nature Energy, 2016, 1, 16030, DOI:10.1038/nenergy.2016.30. 24. Ramaswamy, R.; Thangadurai, V.; Weppner, W., Fast lithium ion conduction in garnet-type Li7La3Zr2O12, Angwe. Chem. Int. Ed., 2007, 41, 7778-7781, DOI: 10.1002/anie.200701144. 25. Thompson, T.; Sharafi, A.; Johannes, M.D.; Huq, A.; Allen, J.L.; Wolfenstine, J.; Sakamoto, J., A tale of two sites: on defining the carrier concentration in garnet-based ionic conductors for advanced Li batteries, Adv. Energy Mater., 2015, 1500096, DOI:10.1002/aenm.201500096. 26. Sharafi, A.; Kazyak, E.; Davis, A.L.; Yu, S.; Thompson, T.; Siegel, D.J.; Dasgupta, N.P.; Sakamoto, J., Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12, Chem. Mater. 2017 29, 7961-7968, DOI: 10.1021/acs.chemmater.7b03002. 27. Gray, F., Polymer Electrolytes, Royal Society of Chemistry (1997). 28. Croce, F.; Appetecchi, G.B.; Persi, L.; Scrosati, B., Nanocomposite polymer electrolytes for lithium batteries, Nature, 1998, 394 (6692), 456-458. 29. Singh, M., Odusanya, O.; Wilmes, G.M.; Eitouni, H.B.; Gomez, E.D.; Patel, A.J.; Chen, V.L.; Park, M.J.; Fragouli, P.; Iatrou, H.; Hadjichristidis, N.; Cookson, D.; Balsara, N.P., Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes, Macromolecules, 2007, 40 (13) 4578-4585. 30. Gauthier, M.; Fauteux, D.; Vassort, G.; Belanger, A.; Duval, M.; Ricoux, P.; Chabagno, J.M.; Muller, D.; Rigaud, P.; Armand, M.B.; Deroo, D., Assessment of polymer-electrolyte batteries for EV and ambient-temperature applications, J. Electrochem. Soc., 1985, 132 (6), 1333-1340, 10.1149/1.2114112. 31. Gauthier, M.; Fauteux, D.; Vassort, G.; Belanger, A.; Duval, M.; Ricoux, P.; Chabagno, J.M.; Muller, D.; Rigaud, P.; Armand, M.B.; Deroo, D., Behavior of Polymer Electrolyte Batteries at 80-100°C and near room temperature, J. Power Sources, 1985, 14 (1-3), 23-26, 10.1016/0378- 7753(85)88005-8. 32. Cheng, E.J.: Sharafi, A.; Sakamoto, J., Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte, Electrochim. Acta, 2017, 223, 85-91, doi.org/10.1016/j.electacta.2016.12.018. 33. The Inorganic Crystal Structure Database, https://www.fiz-karlsruhe.de/en/leistungen/kristallographie/icsd.html. NEXT GENERATION ELECTRICAL ENERGY STORAGE PANEL 5 REPORT 141

PDF Image | Next Generation Electrical Energy Storage

PDF Search Title:

Next Generation Electrical Energy Storage

Original File Name Searched:

BRN-NGEES_rpt-low-res.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)