logo

Next Generation Electrical Energy Storage

PDF Publication Title:

Next Generation Electrical Energy Storage ( next-generation-electrical-energy-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 148

REPORT OF THE BASIC RESEARCH NEEDS WORKSHOP 34. Curtarolo, S.; Hart, G.L.W.; Nardelli, M.B.; Mingo, N.; Sanvito, S.; Levy, O., The high-throughput highway to computational materials design, Nature Mater., 2013, 12 (3), 191-201. 35. Bachman, J.C.; Muy, S.; Grimaud, A.; Chang, H.-H.; Pour, N.; Lux, S.F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; Giordano, L.; Shao-Horn, Y., Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction, Chem. Rev., 2016, 116 (1), 140-162, 10.1021/acs.chemrev.5b00563. 36. Wang, Y.; Richards, W.D.; Ong, S.P.; Miara, L.J.; Kim, J.C.; Mo, Y.; Ceder, G., Design principles for solid-state lithium superionic conductors, Nature Mater., 2015, 14 (10), 1026-1031, DOI: 10.1038/nmat4369. 37. Thompson, T., Yu, S.; Williams, L.; Schmidt, R.D.; Garcia-Mendez, R.; Wolfenstine, J.; Allen, J.L.; Kioupakis, E.; Siegel, D.J.; Sakamoto, J., Electrochemical window of the Li-ion solid electrolyte Li7La3Zr2O12, ACS Energy Lett., 2017, 2 (2), 462-468, 10.1021/acsenergylett.6b00593. 38. Zhu, Y.; He, X.; Mo, Y., Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations, ACS Appl. Mater. Interfaces, 2015, 7 (42), 23685-23693, 10.1021/acsami.5b07517. 39. Richards, W.D.; Miara, L.J.; Wang, Y.; Kim, J.C.; Ceder, G., Interface stability in solid-state batteries, Chem. Mater., 2016, 28 (1), 266-273, 10.1021/ acs.chemmater.5b04082. 40. Yu, S.; Schmidt, R.D.; Garcia-Mendez, R.; Herbert, E.; Dudney, N.J.; Wolfenstine, J.B.; Sakamoto, J.; Siegel, D.J., Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO), Chem. Mater., 2016, 28 (1), 197-206, 10.1021/acs.chemmater.5b03854. 41. Monroe, C.; Newman, J., The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces, J. Electrochem. Soc., 2005, 152 (2), A396-A404, 10.1149/1.1850854. 42. Deng, Z.; Wang, Z.; Chu, I.-H.; Luo, J.; Ong, S.P., Elastic properties of alkali superionic conductor electrolytes from first principles calculations, J. Electrochem. Soc., 2016, 163 (2), A67-A74. 10.1149/2.0061602jes. 43. Kozen, A.C.; Pearse, A.J.; Lin, C.F.; Noked, M.; Rubloff, G.W., Atomic layer deposition of the solid electrolyte LiPON, Chem. Mater., 2015, 27 (15), 5324-5331, 10.1021/acs.chemmater.5b01654. 44. Pearse, A.J.; Schmitt, T.E.; Fuller, E.J.; El-Gabaly, F.; Lin, C.F.; Gerasopoulos, K.; Kozen, A.C.; Talin, A.A.; Rubloff, G.; Gregorczyk, K.E., Nanoscale solid state batteries enabled by thermal atomic layer deposition of a lithium polyphosphazene solid state electrolyte, Chem. Mater., 2017, 29 (8), 3740, 10.1021/acs.chemmater.7b00805. 45. Kazyak, E.; Chen, K.H.; Wood, K.N.; Davis, A.L.; Thompson, T.; Bielinski, A.R.; Sanchez, A.J.; Wang, X.; Wane, CM.; Sakamoto, J.; Dasgupta, N.P., Atomic layer deposition of the solid electrolyte garnet Li7La3Zr2O12, Chem. Mater., 2017, 29 (8), 3785, 10.1021/acs.chemmater.7b00944. 46. Busche, M.R.; Weber, D.A.; Schneider, Y.; Dietrich, C.; Wenzel, S.; Leichtweiss, T.; Schroder, D.; Zhang, W.B.; Weigand, H.; Walter, D.; Sedlmaier, S.J.; Houtarde, D.; Nazar, L.F.; Janek, J., Monitoring of fast Li-ion conductor Li7P3S11 crystallization inside a hot-press setup, Chem. Mater., 2016, 28 (17), 6152-6165, 10.1021/acs.chemmater.6b02163. 47. Shoemaker, D.P., Chung, D.Y.; Mitchell, J.F.; Bray, T.H.; Soderholm, L.; Chupas, P.J.; Kanatzidis, M.G., Understanding fluxes as media for directed synthesis: In situ local structure of molten potassium polysulfides, J. Amer. Chem. Soc., 2012, 134 (22), 9456-9463, 10.1021/ja303047e. 48. Hasegawa, M.; Sugawara, K.; Suto, R.; Sambonsuge, S.; Teraoka, Y.; Yoshigoe, A.; Filimonov, S.; Fukidome, H.; Suemitsu, M., In situ SR-XPS observation of Ni-assisted low-temperature formation of epitaxial graphene on 3C-SiC/Si, Nanoscale Res. Lett., 2015, 10, 10.1186/s11671-015-1131-9. 49. Ievlev, A.V.; Jesse, S.; Cochell, T.J.; Unocic, R.R.; Protopopescu, V.A.; Kalinin, S.V., Quantitative description of crystal nucleation and growth from in situ scanning transmission electron microscopy, ACS Nano, 2015, 9 (12), 11784-11791, 10.1021/acsnano.5b03720. 50. Chien, P.-H.; Jee, Y.; Huang, C.; Dervisoglu, R.; Hung, I.; Gan, Z.; Huang, K.; Hu, Y.-Y., On the origin of high ionic conductivity in Na-doped SrSiO3, Chem. Sci., 2016, 7 (6), 3667-3675, 10.1039/C5SC04270D. 51. Cologna, M.; Francis, J.S.C.; Raj, R., Field assisted and flash sintering of alumina and its relationship to conductivity and MgO-doping, J. Europ. Ceram. Soc., 2011, 31 (15), 2827-2837. 52. Lalere, F.; Leriche, J.B.; Courty, M.; Boulineau, S.; Viallet, V.; Masquelier, C.; Seznec, V., An all-solid state NASICON sodium battery operating at 200 degrees C, J. Power Sources, 2014, 247, 975-980, 10.1016/j.jpowsour.2013.09.051. 53. Baek, S.W.; Lee, J.M.; Kim, T.Y.; Song, M.S.; Park, Y., Garnet related lithium ion conductor processed by spark plasma sintering for all solid state batteries, J. Power Sources, 2014, 249, 197-206, 10.1016/j.jpowsour.2013.10.089. 54. Chu, I.H.; Nguyen, H.; Hy, S.; Lin, Y.C.; Wang, Z.B.; Xu, Z.H.; Deng, Z.; Meng, Y.S.; Ong, S.P., Insights into the performance limits of the Li7P3S11 superionic conductor: A combined first-principles and experimental study, ACS Appl. Mater. Interfaces, 2016, 8 (12), 7843-7853, 10.1021/ acsami.6b00833. 55. Harry, K.J.; Hallinan, D.T.; Parkinson, D.Y.; MacDowell, A.A.; Balsara, N.P., Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes, Nature Mater., 2014, 13 (1), 69-73, 10.1038/nmat3793. 56. Sharafi, A.; Meyer, H.M.; Nanda, J.; Wolfenstine, J.; Sakamoto, J., Characterizing the Li-Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density, J. Power Sources, 2016, 302, 135-139, 10.1016/j.jpowsour.2015.10.053. 57. Wang, C.W.; Gong, Y.H.; Liu, B.Y.; Fu, K.; Yao, Y.G.; Hitz, E.; Li, Y.J.; Dai, J.Q.; Xu, S.M.; Luo, W.; Wachsman, E.D.; Hu, L.B., Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes, Nano Lett., 2017, 17 (1), 565-571, 10.1021/acs. nanolett.6b04695. 58. Dudney, N.J., Solid-state thin-film rechargeable batteries, Mater. Sci. Eng. B, 2005, 116 (3), 245-249, 10.1016/j.mseb.2004.05.045. 59. U.S. Department of Energy, Basic Energy Sciences Summary Report, http://science.energy.gov/~/media/bes/pdf/reports/files/OFMS_rpt.pdf (2014). 60. Han, X.; Gong, Y.; Fu, K.; He, X.; Hitz, G.T.; Dai, J.; Pearse, A.; Liu, B.; Wang, H.; Rubloff, G.; Mo, Y.; Thangadurai, V.; Wachsman, E.D.; Hu, L., Negating interfacial impedance in garnet-based solid-state Li metal batteries, Nat. Mater., 2016, 16, 572-579, DOI: 10.1038/nmat4821. 61. Bruce, P.G.; Freunberger, S.A.; Hardwick, L.J.; Tarascon, J.M., Li-O2 and Li-S batteries with high energy storage, Nature Mater., 2012, 11 (1), 19-29, DOI:10.1038/nmat319. 62. Wenzel, S.; Weber, D.A.; Leichtweiss, T.; Busche, M.R.; Sann, J.; Janek, J., Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte, Solid State Ionics, 2016, 286, 24-33, DOI: 10.1016/j.ssi.2015.11.034. 63. Singh, M.; Odusanya, O.; Wilmes, G.M.; Eitouni, H.B.; Gomez, E.D.; Patel, A.J.; Chen, V.L.; Park, M.J.; Fragouli, P.; Iatrou, H.; Hadjichristidis, N.; Cookson, D.; Balsara, N.P., Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes, Macromolecules, 2007, 40 (13), 4578-4585. DOI: 10.1021/ma0629541. 64. Garcia-Mendez, R.; Mizuno, F.; Zhang, R.; Arthur, T.S.; Sakamoto, J., Effect of processing conditions of 75Li2S-25P2S5 solid electrolyte on its DC electrochemical behavior, Electrochim. Acta, 2017, DOI: 10.1016/j.electacta.2017.03.200. 142 PANEL 5 REPORT

PDF Image | Next Generation Electrical Energy Storage

next-generation-electrical-energy-storage-148

PDF Search Title:

Next Generation Electrical Energy Storage

Original File Name Searched:

BRN-NGEES_rpt-low-res.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP