Next Generation Electrical Energy Storage

PDF Publication Title:

Next Generation Electrical Energy Storage ( next-generation-electrical-energy-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 149

65. Cheng, L.; Crumlin, E.J.; Chen, W.; Qiao, R.; Hou, H.; Lux, S.F.; Zorba, V.; Russo, R.; Kostecki, R.; Liu, Z.; Persson, K.; Yang, Y.; Cabana, J.; Richardson, T.; Chen, G.; Doeff, M., The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes, Phys. Chem. Chemical Phys., 2014, 16 (34), 18294-18300, DOI: 10.1039/C4CP02921F. 66. Monroe, C.; Newman, J., The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc., 2005, 152 (2), A396-A404, DOI: 10.1149/1.1850854. 67. Raj, R.; Wolfenstine, J., Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries, J. Power Sources, 2017, 343, 119-126, DOI: 10.1016/j.jpowsour.2017.01.037. 68. Virkar, A.V.; Viswanathan, L., A three-dimensional approach to the electrolytic degradation of solid electrolytes, J. Mater. Sci., 1983, 18 (4), 1202-1212, DOI: DOI:10.1007/BF00551990. 69. Ren, Y.; Shen, Y.; Lin, Y.; Nan, C.W., Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte, Electrochem. Commun., 2015, 57, 27-30, DOI: 10.1016/j.elecom.2015.05.001. 70. Miara, L.J.; Ong, S.P.; Mo, Y.; Richards, W.D.; Park, Y.; Lee, J.; Lee, H.S.; Ceder, G., Effect of Rb and Ta doping on the ionic conductivity and stability of the garnet Li7+2x–y(La3–xRbx)(Zr2–yTay)O12 (0 ≤x≤ 0.375, 0 ≤y≤ 1) superionic conductor, Chem. Mater., 2013, 25 (15), 3048-3055, DOI: 10.1021/ cm401232r. 71. Wenzel, S.; Weber, D.A.; Leichtweiss, T.; Busche, M.R.; Sann, J.; Janek, J., Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte, Solid State Ionics, 2016, 286, 24-33, DOI: 10.1016/j.ssi.2015.11.034. 72. Ma, C.; Cheng, Y.; Yin, K.; Luo, J.; Sharafi, A.; Sakamoto, J.; Li, J.; More, K.L.; Dudney, N.J.; Chi, M., Interfacial stability of Li metal–solid electrolyte elucidated via in situ electron microscopy, Nano Lett., 2016, 16 (11), 7030-7036, DOI: 10.1021/acs.nanolett.6b03223. 73. Wolf, D.; Lubk, A.; Lichte, H.; Friedrich, H., Towards automated electron holographic tomography for 3D mapping of electrostatic potentials, Ultramicroscopy, 2010, 110, 390-399, DOI: 10.1016/j.ultramic.2009.12.015. 74. Yamamoto, K.; Iriyama, Y.; Hirayama, T., Operando observations of solid-state electrochemical reactions in Li-ion batteries by spatially resolved TEM EELS and electron holography, Microscopy, 2017, 66, 50-61, DOI: 10.1093/jmicro/dfw043. 75. Yamamoto, K.; Iriyama, Y.; Asaka, T.; Hirayama, T.; Fujita, H.; Fisher, C.A.J.; Nonaka, K.; Sugita, Y.; Ogumi, Z., Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery, Angew. Chem.-Inter. Ed., 2010, 49, 4414-4417, DOI: 10.1002/ange.200907319. 76. Hausbrand, R.; Becker, D.; Jaegermann, W., A surface science approach to cathode/electrolyte interfaces in Li-ion batteries: Contact properties, charge transfer and reactions, Prog. Solid State Chem., 2014, 42, 175-183, DOI: 10.1016/j.progsolidstchem.2014.04.010. 77. Masuda, H.; Ishida, N.; Ogata, Y.; Ito, D.; Fujita, D., Internal potential mapping of charged solid-state-lithium ion batteries using in situ kelvin probe force microscopy, Nanoscale, 2017, 9, 893-898, DOI: 10.1039/c6nr07971g. 78. Dragoo, A.L.; Chiang, C.K.; Franklin, A.D.; Bethin, J., Impedance spectrum of a single grain boundary in yttrium stabilized zirconia, Solid State Ionics, 1982, 7, 249-255, DOI: 10.1016/0167-2738(82)90056-x. 79. Dudney, N.J., Evolution of the lithium morphology from cycling of thin film solid state batteries, J. Electroceram., 2017, https://link.springer.com/ article/10.1007/s10832-017-0073-2. 80. Dudney, N.J.; Bates, J.B.; Zuhr, R.A.; Young, S.; Robertson, J.D.; Jun, H.P.; Hackney, S.A., Nanocrystalline LixMn2-yO4 cathodes for solid-state thin- film rechargeable lithium batteries, J. Electrochem. Soc., 1999, 146 (7), 2455-2464. 81. Wang, Y.; Richards, W.D.; Ong, S.P.; Miara, L.J.; Kim, J.C.; Mo, Y.; Ceder, G., Design principles for solid-state lithium superionic conductors, Nature Mater., 2015, 14 (10), 1026-1031. 82. Jang, Y.I.; Dudney, N.J.; Blom, D.A.; Allard, L.F., High-voltage cycling behavior of thin-film LiCoO2 cathodes, J. Electrochem. Soc., 2002, 149 (11), A1442-A1447. 83. West, W.C.; Whitacre, J.F., Long cycle life elevated temperature thin-film batteries incorporating MoO3 cathodes, J. Electrochem. Soc., 2005, 152 (5), A966-A969. 84. Harry, K.J.; Higa, K.; Srinivasan, V.; Balsara, N.P., Influence of electrolyte modulus on the local current density at a dendrite tip on a lithium metal electrode, J. Electrochem. Soc., 2016, 163, A2216-A2224, DOI: 10.1149/2.0191610jes. NEXT GENERATION ELECTRICAL ENERGY STORAGE PANEL 5 REPORT 143

PDF Image | Next Generation Electrical Energy Storage

PDF Search Title:

Next Generation Electrical Energy Storage

Original File Name Searched:

BRN-NGEES_rpt-low-res.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)