logo

Next Generation Electrical Energy Storage

PDF Publication Title:

Next Generation Electrical Energy Storage ( next-generation-electrical-energy-storage )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 157

19. Ma, C.; Cheng, Y.; Yin, K.; Lu, J.; Sharafi, A.; Sakamoto, J.; Li, J.; More, K.L.; Dudney, N.J.; Chi, C., Interfacial stability of Li metal-solid electrolyte elucidated via in situ electron microscopy, Nano Lett., 2016, 16 (11), 7030-7036, DOI:10.1021/acs.nanolett.6b03223. 20. He, K.; Zhang, S.; Li, J.; Yu, X.; Meng, Q.; Zhu, Y.; Hu, E.; Sun, K.; Yun, H.; Yang, X.-Q.; Zhu, Y.; Gan, H.; Mo, Y.; Stach, E.A.; Murray, C.B.; Su, D., Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy, Nature Commun., 2016, 7, 11441. 21. Yang, Y.; Chen, C.-C.; Scott, M.C; Ophus, C.; Xu, R.; Pryor, A.; Wu, L.; Sun, F.; Theis, W.; Zhou, J.; Eisenbach, M.; Kent, P.R.C.; Sabirianov, R.F; Zeng, H.; Ercius, P.; Miao, J., Deciphering chemical order/disorder and material properties at the single-atom level, Nature, 2017, 542, 75-79. 22. Qian, D.N.; Ma, C.; More, K.L.; Meng, Y.S.; Chi, M.F., Advanced analytical electron microscopy for lithium-ion batteries, NPG Asia Mater., 2015, 7, e193, DOI:10.1038/am.2015.50. 23. Gu, L.; Zhu, C.; Li, H.; Yu, Y.; Li, C.; Tsukimoto, S.; Maier, J.; Ikuhara, Y., Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution, J. Amer. Chem. Soc., 2011, 133 (13), 4661-4663. 24. Zhu, Y.; Ciston, J.; Zheng, B.; Miao, X.; Czarnik, C.; Pan, Y.; Sougrat, R.; Lai, Z.; Hsiung, C.-E.; Yao, K.; Pinnau, I.; Pan, M.; Han, Y., Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy, Nature Mater., 2017, 16, DOI:10.1038/nmat4852. 25. Pennycook, T.J.; Lupini, A.R.; Yang, H.; Murfitt, M.F.; Jones, L.; Nellist, P.D., Efficient phase contrast imaging in STEM using a pixelated detector, Part 1: Experimental demonstration at atomic resolution, Ultramicroscopy, 2015, 151, 160-167. 26. Jesse, S.; Chi, M.; Belianinov, A.; Beekman, C.; Kalinin, S.V.; Borisevich, A.Y.; Lupini, A.R., Big data analytics for scanning transmission electron microscopy ptychography, Sci. Rep., 2016, 6, 26348. 27. Humphry, M.J.; Kraus, B.; Hurst, A.C.; Maiden, A.M.; Rodenburg, J.M., Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging, Nature Commun., 2012, 3, 730. 28. Han, L.; Meng, Q.; Wang, D.; Zhu, Y.; Wang, J.; Du, X.; Stach, E.A.; Xin, H.L., Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale, Nature Commun., 2016, 7, 13335. 29. Krivanek, O.L.; Lovejoy, T.C.; Dellby, N.; Aoki, T.; Carpenter, R.W.; Rez, P.; Soignard, E.; Zhu, J.; Batson, P.E.; Lagos, M.J.; Egerton, R.F.; Crozier, P.A., Vibrational spectroscopy in the electron microscope, Nature, 2014, 514, 209-212. 30. Lagos, M.J.; Trügler, A.; Hohenester, U.; Batson, P.E., Mapping vibrational surface and bulk modes in a single nanocube, Nature, 2017, 543, 529-532. 31. Amatucci, G.G.; Tarascon, J.M.; Klein, L.C., CoO2, the end member of the LixCoO2 solid solution, J. Electrochem. Soc., 1996, 143, 1114. 32. Qi, Y.; Hector, L.G., James, C.; Kim, K.J., Lithium concentration dependent elastic properties of battery electrode materials from first principles calculations, J. Electrochem. Soc., 2014, 161, F3010. 33. Hantel, M.M.; Presser, V.; Kötz , R.; Gogotsi, Y., In situ electrochemical dilatometry of carbide-derived carbons, Electrochem. Commun., 2013, 13, 1221. 34. Black, J.M.; Feng, G.; Fulvio, P.F.; Hillesheim, P.C.; Dai, S.; Gogotsi, Y.; Cummings, P.T.; Kalinin, S.V.; Balke, N., Strain-based in situ study of anion and cation insertion into porous carbon electrodes with different pore sizes, Adv. Energy Mater., 2014, 4, DOI:10.1002/aenm.201300683. 35. Jäckel, N.; Krüner, B.; Van Aken, K.L.; Alhabeb, M.; Anasori, B.; Kaasik, F.; Gogotsi, Y.; Presser, V., Electrochemical in situ tracking of volumetric changes in two-dimensional metal carbides (MXenes) in ionic liquids, ACS Appl. Mater. Interfaces, 2016, 8, 32089. 36. Come, J.; Black, J.M.; Lukatskaya, M.R.; Naguib, M.; Beidaghi, M.; Rondinone, A.J.; Kalinin, S.V.; Wesolowski, D. J.; Gogotsi, Y.; Balke, N., Controlling the actuation properties of MXene paper electrodes up-on cation intercalation, Nano Energy, 2015, 17, 27-35. 37. Come, J., Xie, Y.; Naguib, M.; Jesse, S.; Kalinin, S.V.; Gogotsi, Y.; Kent, P.R.C.; Balke, N., Nanoscale elastic changes in 2D Ti3C2Tx (MXene) pseudocapacitive electrodes, Adv. Ener. Mater., 2016, 6, 1502290. 38. Bhadra, S.; Hsieh, A.G.; Wang, M.J.; Hertzberg, B.J.; Steingart, D.A., Anode characterization in zinc-manganese dioxide AA alkaline batteries using electrochemical-acoustic time-of-flight analysis, J. Electrochem. Soc., 2016, 163 (6), A1050-A1056. 39. Ohmer, N.; Fenk, B.; Samuelis, D.; Chen, C-C.; Maier, J.; Weigand, M.; Goering, E.; Schutz, G., Phase evolution in single-crystalline LiFePO4 followed by in situ scanning X-ray microscopy of a micrometre-sized battery, Nature Communications, 2015, 6, 6045, DOI: 10.1038/ncomms7045. 40. Hitchcock, A.P.; Toney, M.F.; Synch, J., Spectromicroscopy and coherent diffraction imaging: focus on energy materials applications, Radiation, 2014, 21, 1019-1030, DOI: 10.1107/S1600577514013046. 41. Lim, J.; Li, Y.; Alsem, D.H.; So, H.; Lee, S.C.; Bai, P.; Cogswell, D.A; Liu, X.; Jin, N.; Yu, Y.; Salmon, N.J.; Shapiro, D.A.; Bazant, M.Z.; Tyliszczak, T.; Chueh, W.C., Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles, Science, 2016, 353, 566-571, DOI: 10.1126/science.aaf4914. 42. Ebner, M.; Marone, F.; Stampanoni, M.; Wood, V., Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries, Science, 2013, 342, 716. 43. Cao, C.; Steinrück, H.G.; Shyam, B.; Stone, K.H.; Toney, M.F., In-situ study of silicon electrode lithiation with X-ray reflectivity, Nano Lett., 2016, 16, 7394-7401, DOI: 10.1021/acs.nanolett.6b02926. 44. Veith, G.M.; Doucet, M.; Baldwin, J.K.; Sacci, R. L.; Fears, T.M.; Wang, Y.; Browning, J.F., Direct determination of solid-electrolyte interphase thickness and composition as a function of state of charge on a silicon anode, J. Phys. Chem. C, 2015, 119 (35), 20339-20349. NEXT GENERATION ELECTRICAL ENERGY STORAGE PANEL 6 REPORT 151

PDF Image | Next Generation Electrical Energy Storage

next-generation-electrical-energy-storage-157

PDF Search Title:

Next Generation Electrical Energy Storage

Original File Name Searched:

BRN-NGEES_rpt-low-res.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP