Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries

PDF Publication Title:

Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries ( solvent-in-salt-electrolyte-high-energy-rechargeable-metalli )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 008

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2513 References 1. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008). 2. Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010). 3. Scrosati, B., Hassoun, J. & Sun, Y. K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4, 3287–3295 (2011). 4. Choi, N. S. et al. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 51, 9994–10024 (2012). 5. Zu, C. X. & Li, H. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 4, 2614–2624 (2011). 6. Ji, X. & Nazar, L. F. Advances in Li-S batteries. J. Mater. Chem. 20, 9821–9826 (2010). 7. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012). 8. Evers, S. & Nazar, L. F. New approaches for high energy density lithium-sulphur battery cathodes. Acc. Chem. Res. doi:10.1021/ar3001348 (2012). 9. Manthiram, A., Fu, Y. Z. & Su, Y. S. Challenges and prospects of lithium–sulphur batteries. Acc. Chem. Res. doi:10.1021/ar300179v (2012). 10. Ji, X. L., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009). 11. Hassoun, J. & Scrosati, B. A high-performance polymer tin sulphur lithium ion battery. Angew. Chem. Int. Ed. 49, 2371–2374 (2010). 12. Elazari, R., Salitra, G., Garsuch, A., Panchenko, A. & Aurbach, D. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Adv. Mater. 23, 5641–5644 (2011). 13. Ji, X. L., Evers, S., Black, R. & Nazar, L. F. Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. Nat. Commun. 2, 235–241 (2011). 14. Demir-Cakan, R. et al. Cathode composites for Li-S batteries via the use of oxygenated porous architectures. J. Am. Chem. Soc. 133, 16154–16160 (2011). 15. Wang, H. L. et al. Graphene-wrapped sulphur particles as a rechargeable lithium-sulphur battery cathode material with high capacity and cycling stability. Nano Lett. 11, 2644–2647 (2011). 16. Zheng, G. Y., Yang, Y., Cha, J. J., Hong, S. S. & Cui, Y. Holow carbon nanofiber- encapsulated sulphur cathodes for high specific capacity rechargeable lihtium batteries. Nano Lett. 11, 4462–4467 (2011). 17. Jayaprakash, N., Shen, J., Moganty, S. S., Corona, A. & Archer, A. Porous hollow carbon@sulphur composites for high-power lithium-sulphur batteriess. Angew. Chem. Int. Ed. 50, 5904–5908 (2011). 18. Schuster, J. et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulphurbatteries. Angew. Chem Int. Ed. 51, 3591–3595 (2012). 19. Schuster, J. & Nazar, L. F. Graphene-enveloped sulfur in a one pot reaction: a cathode with good coulombic efficiency and high practical sulfur content. Chem. Commun. 48, 1233–1235 (2012). 20. Su, Y. S. & Manthiram, A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat. Commun. 3, 1166 (2012). 21. Xia, L. F. et al. A soft approach to encapsulate sulphur: polyaniline nanotubes for lithium-sulphur batteries with long cycle life. Adv. Mater. 24, 1176–1181 (2012). 22. Yang, Y. et al. Improving the performance of lithium-sulphur batteries by conductive polymer coating. ACS Nano 5, 9187–9193 (2011). 23. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev 104, 4303–4417 (2004). 24. Armand, M. B., Chabagno, J. M. & Duclot, M. J. In: Vashishta, P., Mundy, J.M. & Shenoy, G.K. (eds). Fast Ion Transport in Solids (Elsevier, 1979; pp 131–136). 25. Croce, F., Appetecchi, G. B., Persi, L. & Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998). 26. Gadjourova, Z., Andreev, Y. G., Tunstall, D. P. & Bruce, P. G. Ionic conductivity in crystalline polymer electrolytes. Nature 412, 520–523 (2001). 27. Robertson, A. D., West, A. R. & Ritchie, A. G. Review of crystalline lithium-ion conductors suitable for high temperature battery applications. Solid State Ionics 104, 1–11 (1997). 28. Kondo, S., Takada, K. & Yamamura, Y. New lithium ion conductors based on Li2S-SiS2. Solid State Ionics 53, 1183–1186 (1992). 29. Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011). 30. Hayashi, A., Ohtomo, T., Mizuno, F., Tadanaga, K. & Tatsumisago, M. All-solid-state Li/S batteries with highly conductive glass-ceramic electrolytes. Electrochem. Commun. 5, 701–705 (2003). 31. Nagao, M., Hayashi, A. & Tatsumisago, M. Sulfide-carbon composite electrode for all-solid-state Li/S battery with Li2S-P2S5 solid electrolyte. Electrochim. Acta 56, 6055–6059 (2011). 32. Nagao, M., Hayashi, A. & Tatsumisago, M. Fabrication of favorable interface between sulfide solid electrolyte and Li metal electrode for bulk-type solid-state Li/S battery. Electrochem. Commun. 22, 177–180 (2012). 33. Angell, C. A., Liu, C. & Sanchez, E. Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity. Nature 362, 137–139 (1993). 34. Hu, Y. S., Li, H., Huang, X. J. & Chen, L. Q. Novel room temperature molten salt electrolyte based on LiTFSI and acetamide for lithium batteries. Electrochem. Commun. 6, 28–32 (2004). 35. Henderson, W. A. et al. Glyme-lithium bis(trifluoromethanesulfonyl)imide and glyme-lithium bis(perfluoroethanesulfonyl)imide phase behavior and solvate structures. Chem. Mater. 17, 2284–2289 (2005). 36. Tachikawa, N. et al. Reversibility of electrochemical reactions of sulphur supported on inverse opal carbon in glyme-Li salt molten complex electrolytes. Chem. Commun. 47, 8157–8159 (2011). 37. Yoshida, K. et al. Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes. J. Am. Chem. Soc. 133, 13121–13129 (2011). 38. Angell, C. A. Electrical conductance of concentrated aqueous solutions and molten salts: correlation through free volume transport model. J. Phys. Chem. 69, 2137 (1965). 39. Angell, C. A. A new class of molten slat mixtures the hydrated dipositive ion as an independent cation species. J. Electrochem. Soc. 112, 1224–1227 (1965). 40. Kawamura, T., Kimura, A., Egashira, M., Okada, S. & Yamaki, J. I. Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells. J. Power Sources 104, 260–264 (2002). 41. Mikhaylik, Y. V. & Akridge, J. R. Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 151, A1969–A1976 (2004). 42. Song, M. S. et al. Effects of nanosized adsorbing material on electrochemical properties of sulphur cathodes for Li/S secondary batteries. J. Electrochem. Soc. 151, A791–A795 (2004). 43. Choi, Y. J. et al. Electrochemical properties of sulphur electrode containing nano Al2O3 for lithium/sulphur cell. Phys. Scr. 62, T129 (2007). 44. Mikhaylik, Y. A. Electrolytes for lithium sulphur cells. US Patent no. 0147891 (2005). 45. Aurbach, D. et al. On the surface chemical aspects of very high energy density, rechargeable Li–sulphur batteries. J. Electrochem. Soc. 156, A694–A720 (2009). 46. Liang, X. et al. Improved cycling performances of lithium sulphur batteries with LiNO3-modified electrolyte. J. Power Sources 196, 9839–9843 (2011). 47. Steven, J. V., Yevgeniy, S. N. & Bruce, D. K. Ionically conductive membranes for protection of active metal anodes and battery cells. US Patent no. 0191617 (2004). 48. Lutgard, D. J., Yevgeniy, S. N. & Steven, J. V. Alleviation of voltage delay in lithium-liquid depolarizer/electrolyte solvent battery cells. US Patent no. 674558 (2010). 49. Shin, S. E., Kim, K., Oh, S. H. & Cho., W. I. Polysulfide dissolution control: the common ion effect. Chem. Commun. doi:10.1039/c2cc36986a (2012). 50. Chazalviel, J. N. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42, 7355–7367 (1990). 51. Rosso, M. Electrodeposition from a binary electrolyte: new developments and applications. Electrochim. Acta 53, 250–256 (2007). 52. Gonzalez, G., Marshall, G., Molina, F. V., Dengra, M. S. & Rosso, M. Viscosity effects in thin layer electrodeposition. J. Electrochem. Soc. 148, C479–C487 (2001). 53. Aurbach, D., Gofer, Y. & Langzam, J. The correlation between surface chemistry, surface morphology, and cycling efficiency of lithium electrodes in a few polar aprotic systems. J. Electrochem. Soc. 136, 3198–3205 (1989). 54. Aurbach, D. & Gront, E. The study of electrolyte solutions based on solvents from the ‘glyme’ family (linear polyethers) for secondary Li battery systems. Electrochim. Acta 42, 697–718 (1997). 55. Aurbach, D., Youngman, O., Gofer, Y. & Meitav, A. The electrochemical behavior of 1,3-dioxolane-LiClO4 solutions. Electrochim. Acta 35, 625–638 (1990). 56. Aurbach, D., Weissman, I. & Schechter, A. X-ray photoelectron spectroscoscopy studies of lithium surface prepared in several important electrolyte solution. A comparison with previous studies by fourier tansform infrared spectroscopy. Langmuir 12, 3991–4007 (1996). 57. Schechter, A. & Aurbach, D. X-ray photoelectron spectroscoscopy study of surface films formd on Li electrodes freshly prepared in alkyl carbonate solutions. Langmuir 15, 3334–3342 (1999). 58. Bhattacharyya, A. J. & Maier, J. Second phase effects on the conductivity of non-aqueous salt solutions: ‘Soggy sand electrolytes’. Adv. Mater. 16, 811–814 (2004). 59. MacFarlane, D. R., Huang, J. H. & Forsyth, M. Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries. Nature 402, 792–794 (1999). 8 NATURE COMMUNICATIONS | 4:1481 | DOI: 10.1038/ncomms2513 | www.nature.com/naturecommunications & 2013 Macmillan Publishers Limited. All rights reserved.

PDF Image | Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries

PDF Search Title:

Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries

Original File Name Searched:

ncomms2513.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)