logo

Study of Rechargeable Batteries Using Advanced Spectroscopic and Computational Techniques

PDF Publication Title:

Study of Rechargeable Batteries Using Advanced Spectroscopic and Computational Techniques ( study-rechargeable-batteries-using-advanced-spectroscopic-an )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 003

Condens. Matter 2021, 6, 26 3 of 4 References 1. Goodenough, J.B. How we made the Li-ion rechargeable battery. Nat. Electron. 2018, 1, 204. [CrossRef] 2. Assat, G.; Tarascon, J.M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 2018, 3, 373–386. [CrossRef] 3. Winter, M.; Barnett, B.; Xu, K. Before Li ion batteries. Chem. Rev. 2018, 118, 11433–11456. [CrossRef] [PubMed] 4. Mauger, A.; Julien, C.M.; Goodenough, J.B.; Zaghib, K. Tribute to Michel Armand: from rocking chair–Li-ion to solid-state lithium batteries. J. Electrochem. Soc. 2019, 167, 070507. [CrossRef] 5. Pellegrini, V.; Bodoardo, S.; Brandell, D.; Edström, K. Challenges and perspectives for new material solutions in batteries. Solid State Commun. 2019, 303, 113733. [CrossRef] 6. Vetter, J.; Novák, P.; Wagner, M.R.; Veit, C.; Möller, K.C.; Besenhard, J.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A. Ageing mechanisms in lithium-ion batteries. J. Power Sources 2005, 147, 269–281. [CrossRef] 7. Quinteros-Condoretty, A.R.; Albareda, L.; Barbiellini, B.; Soyer, A. A Socio-technical transition of sustainable lithium industry in Latin America. Procedia Manuf. 2020, 51, 1737–1747. [CrossRef] 8. Quinteros-Condoretty, A.R.; Golroudbary, S.R.; Albareda, L.; Barbiellini, B.; Soyer, A. Impact of circular design of lithium-ion batteries on supply of lithium for electric cars towards a sustainable mobility and energy transition. Procedia CIRP 2021, 100, 73–78. [CrossRef] 9. Hafiz, H.; Suzuki, K.; Barbiellini, B.; Tsuji, N.; Yabuuchi, N.; Yamamoto, K.; Orikasa, Y.; Uchimoto, Y.; Sakurai, Y.; Sakurai, H.; et al. Tomographic reconstruction of oxygen orbitals in lithium-rich battery materials. Nature 2021, 594, 213–216. [CrossRef] 10. Suzuki, K.; Suzuki, S.; Otsuka, Y.; Tsuji, N.; Jalkanen, K.; Koskinen, J.; Hoshi, K.; Honkanen, A.P.; Hafiz, H.; Sakurai, Y.; et al. Redox oscillations in 18650-type lithium-ion cell revealed by in operando Compton scattering imaging. Appl. Phys. Lett. 2021, 118, 161902. [CrossRef] 11. Huang, W.; Marcelli, A.; Xia, D. Application of synchrotron radiation technologies to electrode materials for Li-and Na-ion batteries. Adv. Energy Mater. 2017, 7, 1700460. [CrossRef] 12. Llewellyn, A.V.; Matruglio, A.; Brett, D.J.L.; Jervis, R.; Shearing, P.R. Using in-situ laboratory and synchrotron-based X-ray diffraction for lithium-ion batteries characterization: A review on recent developments. Condens. Matter 2020, 5, 75. [CrossRef] 13. Mullaliu, A.; Conti, P.; Aquilanti, G.; Plaisier, J.R.; Stievano, L.; Giorgetti, M. Operando XAFS and XRD study of a Prussian blue analogue cathode material: Iron Hexacyanocobaltate. Condens. Matter 2018, 3, 36. [CrossRef] 14. Wu, J.; Li, Q.; Sallis, S.; Zhuo, Z.; Gent, W.E.; Chueh, W.C.; Yan, S.; Chuang, Y.D.; Yang, W. Fingerprint oxygen redox reactions in batteries through high-efficiency mapping of resonant inelastic X-ray scattering. Condens. Matter 2019, 4, 5. [CrossRef] 15. Suzuki, K.; Barbiellini, B.; Orikasa, Y.; Go, N.; Sakurai, H.; Kaprzyk, S.; Itou, M.; Yamamoto, K.; Uchimoto, Y.; Wang, Y.J.; et al. Extracting the redox orbitals in Li battery materials with high-resolution X-ray Compton scattering spectroscopy. Phys. Rev. Lett. 2015, 114, 087401. [CrossRef] [PubMed] 16. Barbiellini, B.; Suzuki, K.; Orikasa, Y.; Kaprzyk, S.; Itou, M.; Yamamoto, K.; Wang, Y.J.; Hafiz, H.; Yamada, R.; Uchimoto, Y.; et al. Identifying a descriptor for d-orbital delocalization in cathodes of Li batteries based on X-ray Compton scattering. Appl. Phys. Lett. 2016, 109, 073102. [CrossRef] 17. Hafiz, H.; Suzuki, K.; Barbiellini, B.; Orikasa, Y.; Callewaert, V.; Kaprzyk, S.; Itou, M.; Yamamoto, K.; Yamada, R.; Uchimoto, Y.; et al. Visualizing redox orbitals and their potentials in advanced lithium-ion battery materials using high-resolution X-ray Compton scattering. Sci. Adv. 2017, 3, e1700971. [CrossRef] 18. Suzuki, K.; Kanai, R.; Tsuji, N.; Yamashige, H.; Orikasa, Y.; Uchimoto, Y.; Sakurai, Y.; Sakurai, H. Dependency of the charge–discharge rate on lithium reaction distributions for a commercial lithium coin cell visualized by Compton scattering imaging. Condens. Matter 2018, 3, 27. [CrossRef] 19. Suzuki, K.; Honkanen, A.P.; Tsuji, N.; Jalkanen, K.; Koskinen, J.; Morimoto, H.; Hiramoto, D.; Terasaka, A.; Hafiz, H.; Sakurai, Y.; et al. High-energy X-ray Compton scattering imaging of 18650-type lithium-ion battery cell. Condens. Matter 2019, 4, 66. [CrossRef] 20. Pussi, K.; Gallo, J.; Ohara, K.; Carbo-Argibay, E.; Kolen’ko, Y.V.; Barbiellini, B.; Bansil, A.; Kamali, S. Structure of manganese oxide nanoparticles extracted via pair distribution functions. Condens. Matter 2020, 5, 19. [CrossRef] 21. Kuriplach, J.; Pulkkinen, A.; Barbiellini, B. First-principles study of the impact of grain boundary formation in the cathode material LiFePO4. Condens. Matter 2019, 4, 80. [CrossRef] 22. Tuomisto, F.; Makkonen, I. Defect identification in semiconductors with positron annihilation: experiment and theory. Rev. Mod. Phys. 2013, 85, 1583. [CrossRef] 23. Barbiellini, B.; Kuriplach, J. Advanced characterization of lithium battery materials with positrons. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2017; Volume 791, p. 012016. 24. Kmjecˇ, T.; Kohout, J.; Dopita, M.; Veverka, M.; Kuriplach, J. Mössbauer spectroscopy of Triphylite (LiFePO4) at Low temperatures. Condens. Matter 2019, 4, 86. [CrossRef] 25. Keshavarz, F.; Kadek, M.; Barbiellini, B.; Bansil, A. Electrochemical potential of the metal organic framework MIL-101 (Fe) as cathode material in Li-ion batteries. Condens. Matter 2021, 6, 22. [CrossRef]

PDF Image | Study of Rechargeable Batteries Using Advanced Spectroscopic and Computational Techniques

study-rechargeable-batteries-using-advanced-spectroscopic-an-003

PDF Search Title:

Study of Rechargeable Batteries Using Advanced Spectroscopic and Computational Techniques

Original File Name Searched:

condensedmatter-06-00026-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP