logo

Superabsorption organic microcavity Toward a quantum battery

PDF Publication Title:

Superabsorption organic microcavity Toward a quantum battery ( superabsorption-organic-microcavity-toward-quantum-battery )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 007

SCIENCE ADVANCES | RESEARCH ARTICLE 8. S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, J. Stenger, D. E. Pritchard, W. Ketterle, Superradiant Rayleigh scattering from a Bose-Einstein condensate. Science 285, 571–574 (1999). 9. R. Reimann, W. Alt, T. Kampschulte, T. Macha, L. Ratschbacher, N. Thau, S. Yoon, D. Meschede, Cavity-modified collective Rayleigh scattering of two atoms. Phys. Rev. Lett. 114, 023601 (2015). 10. A. Angerer, K. Streltsov, T. Astner, S. Putz, H. Sumiya, S. Onoda, J. Isoya, W. J. Munro, K. Nemoto, J. Schmiedmayer, J. Majer, Superradiant emission from colour centres in diamond. Nat. Phys. 14, 1168–1172 (2018). 11. K. D. Higgins, S. C. Benjamin, T. M. Stace, G. J. Milburn, B. W. Lovett, E. M. Gauger, Superabsorption of light via quantum engineering. Nat. Commun. 5, 4705 (2014). 12. D. Yang, S.-h. Oh, J. Han, G. Son, J. Kim, J. Kim, M. Lee, K. An, Realization of superabsorption by time reversal of superradiance. Nat. Photonics 15, 272–276 (2021). 13. R. Alicki, M. Fannes, Entanglement boost for extractable work from ensembles of quantum batteries. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87, 042123 (2013). 14. K. V. Hovhannisyan, M. Perarnau-Llobet, M. Huber, A. Acin, Entanglement generation is not necessary for optimal work extraction. Phys. Rev. Lett. 111, 240401 (2013). 15. F. C. Binder, S. Vinjanampathy, K. Modi, J. Goold, Quantacell: Powerful charging of quantum batteries. New J. Phys. 17, 075015 (2015). 16. G. M. Andolina, D. Farina, A. Mari, V. Pellegrini, V. Giovannetti, M. Polini, Charger-mediated energy transfer in exactly solvable models for quantum batteries. Phys. Rev. B 98, 205423 (2018). 17. G. M. Andolina, M. Keck, A. Mari, M. Campisi, V. Giovannetti, M. Polini, Extractable work, the role of correlations, and asymptotic freedom in quantum batteries. Phys. Rev. Lett. 122, 047702 (2019). 18. R. Alicki, A quantum open system model of molecular battery charged by excitons. J. Chem. Phys. 150, 214110 (2019). 19. Y. Y. Zhang, T. R. Yang, L. Fu, X. Wang, Powerful harmonic charging in a quantum battery. Phys. Rev. E 99, 052106 (2019). 20. F. Campaioli, F. A. Pollock, F. C. Binder, L. Celeri, J. Goold, S. Vinjanampathy, K. Modi, Enhancing the charging power of quantum batteries. Phys. Rev. Lett. 118, 150601 (2017). 21. J. Q. Quach, W. J. Munro, Using dark states to charge and stabilize open quantum batteries. Phys. Rev. Appl. 14, 024092 (2020). 22. T. P. Le, J. Levinsen, K. Modi, M. M. Parish, F. A. Pollock, Spin-chain model of a many-body quantum battery. Phys. Rev. A 97, 022106 (2018). 23. X. Zhang, M. Blaauboer, Enhanced energy transfer in a Dicke quantum battery. arXiv:1812.10139 (2018). 24. D. Ferraro, M. Campisi, G. M. Andolina, V. Pellegrini, M. Polini, High-power collective charging of a solid-state quantum battery. Phys. Rev. Lett. 120, 117702 (2018). 25. S. Gherardini, F. Campaioli, F. Caruso, F. C. Binder, Stabilizing open quantum batteries by sequential measurements. Phys. Rev. Res. 2, 013095 (2020). 26. A. C. Santos, A. Saguia, M. S. Sarandy, Stable and charge-switchable quantum batteries. Phys. Rev. E 101, 062114 (2020). 27. W. M. Brown, E. M. Gauger, Light harvesting with guide-slide superabsorbing condensed-matter nanostructures. J. Phys. Chem. Lett. 10, 4323–4329 (2019). 28. D. Sanvitto, S. Kéna-Cohen, The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016). 29. V. Savona, L. C. Andreani, P. Schwendimann, A. Quattropani, Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes. Solid State Commun. 93, 733–739 (1995). 30. G. Cerullo, C. Manzoni, L. Lüer, D. Polli, Time-resolved methods in biophysics. 4. Broadband pump–probe spectroscopy system with sub-20 fs temporal resolution for the study of energy transfer processes in photosynthesis. Photochem. Photobiol. Sci. 6, 135–144 (2007). 31. C. Manzoni, G. Cerullo, Design criteria for ultrafast optical parametric amplifiers. J. Opt. 18, 103501 (2016). 32. O. Svelto, D. C. Hanna, Principles of Lasers (Springer, 2010), vol. 1. 33. T. Virgili, D. G. Lidzey, D. D. C. Bradley, G. Cerullo, S. Stagira, S. De Silvestri, An ultrafast spectroscopy study of stimulated emission in poly(9,9-dioctylfluorene) films and microcavities. Appl. Phys. Lett. 74, 2767–2769 (1999). 34. P. Kirton, J. Keeling, Suppressing and restoring the Dicke superradiance transition by dephasing and decay. Phys. Rev. Lett. 118, 123602 (2017). 35. K. B. Arnardottir, A. J. Moilanen, A. Strashko, P. Törmä, J. Keeling, Multimode organic polariton lasing. arXiv:2004.06679 (2020). 36. M. Zens, D. O. Krimer, S. Rotter, Critical phenomena and nonlinear dynamics in a spin ensemble strongly coupled to a cavity. II. Semiclassical-to-quantum boundary. Phys. Rev. A 100, 013856 (2019). 37. K. D. B. Higgins, B. W. Lovett, E. M. Gauger, Quantum-enhanced capture of photons using optical ratchet states. J. Phys. Chem. C 121, 20714–20719 (2017). 38. C. P. Dietrich, A. Steude, L. Tropf, M. Schubert, N. M. Kronenberg, K. Ostermann, S. Hofling, M. C. Gather, An exciton-polariton laser based on biologically produced fluorescent protein. Sci. Adv. 2, e1600666 (2016). 39. Y. Wang, P. Shen, J. Liu, Y. Xue, Y. Wang, M. Yao, L. Shen, Recent advances of organic solar cells with optical microcavities. Solar RRL 3, 1900181 (2019). 40. B. Kippelen, J.-L. Brédas, Organic photovoltaics. Energ. Environ. Sci. 2, 251–261 (2009). 41. K. A. Mazzio, C. K. Luscombe, The future of organic photovoltaics. Chem. Soc. Rev. 44, 78–90 (2015). 42. G. J. Hedley, A. Ruseckas, I. D. W. Samuel, Light harvesting for organic photovoltaics. Chem. Rev. 117, 796–837 (2017). 43. P. Cheng, G. Li, X. Zhan, Y. Yang, Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photonics 12, 131–142 (2018). 44. E. Hecht, Optics (Pearson Education Incorporated, 2017). 45. D. Wang, H. Kelkar, D. Martin-Cano, D. Rattenbacher, A. Shkarin, T. Utikal, S. Götzinger, V. Sandoghdar, Turning a molecule into a coherent two-level quantum system. Nat. Phys. 15, 483–489 (2019). 46. C. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences (ed. 4, 2009). 47. J. del Pino, J. Feist, F. J. Garcia-Vidal, Quantum theory of collective strong coupling of molecular vibrations with a microcavity mode. New J. Phys. 17, 053040 (2015). 48. J. V. Wall, C. R. Jenkins, Practical Statistics for Astronomers (Cambridge Univ. Press, 2003). 49. L. V. Wang, H.-i. Wu, Biomedical Optics: Principles and Imaging (John Wiley & Sons, 2012). 50. K. Yamashita, U. Huynh, J. Richter, L. Eyre, F. Deschler, A. Rao, K. Goto, T. Nishimura, T. Yamao, S. Hotta, H. Yanagi, M. Nakayama, R. H. Friend, Ultrafast dynamics of polariton cooling and renormalization in an organic single-crystal microcavity under nonresonant pumping. ACS Photonics 5, 2182–2188 (2018). Acknowledgments: We thank C. Clark and R. Preston at Helia Photonics Ltd. for fabricating the bottom DBRs. We also thank R. Grant for the measurement of concentration-dependent photoluminescence quantum yield of the LFO. Funding: We thank the U.K. EPSRC for partly funding this research via the Programme Grant “Hybrid Polaritonics” (EP/M025330/1). We also thank the Royal Society for an International Exchange Grant (IES\R3\170324) “Development of BODIPY dyes for strongly coupled microcavities.” K.E.M. thanks the University of Sheffield for a PhD studentship via the EPSRC DTP account EP/R513313/1. D.M.R. acknowledges studentship funding from EPSRC under grant no. EP/L015110/1. T.V. and L.G. thank the Regione Lombardia Funding project IZEB. J.Q.Q. acknowledges the Ramsay fellowship and the Centre for Nanoscale BioPhotonics Family Friendly Fund for financial support of this work. Author contributions: J.Q.Q. conceived and managed the project. K.E.M. and D.G.L. contributed to the fabrication of the Dicke QBs. L.G., K.E.M., G.C., and T.V. contributed to the measurement of the Dicke QBs. D.M.R., J.Q.Q., B.W.L., E.M.G., and J.K. contributed to the theoretical analysis. All authors contributed to the discussion of the results and the writing of the manuscript. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. The research data supporting this publication can be accessed at https://doi.org/10.17630/66875381-317e-4d6c-b884-d069547301ea. Submitted 9 July 2021 Accepted 23 November 2021 Published 14 January 2022 10.1126/sciadv.abk3160 Quach et al., Sci. Adv. 8, eabk3160 (2022) 14 January 2022 7 of 7 Downloaded from https://www.science.org on June 26, 2022

PDF Image | Superabsorption organic microcavity Toward a quantum battery

superabsorption-organic-microcavity-toward-quantum-battery-007

PDF Search Title:

Superabsorption organic microcavity Toward a quantum battery

Original File Name Searched:

sciadvabk3160.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP