Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries

PDF Publication Title:

Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries ( synchrotron-based-x-ray-diffraction-lithium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 023

Condens. Matter 2020, 5, 75 23 of 28 10. Bañares, M.A. In situ to operando spectroscopy: From proof of concept to industrial application. Top. Catal. 2009, 52, 1301–1302. [CrossRef] 11. Morcrette, M.; Chabre, Y.; Vaughan, G.; Amatucci, G.; Leriche, J.-B.; Patoux, S.; Masquelier, C.; Tarascon, J.-M. In situ X-ray diffraction techniques as a powerful tool to study battery electrode materials. Electrochim. Acta 2002, 47, 3137–3149. [CrossRef] 12. Borkiewicz, O.J.; Wiaderek, K.M.; Chupas, P.J.; Chapman, K.W. Best practices for operando battery experiments: Influences of X-ray experiment design on observed electrochemical reactivity. J. Phys. Chem. Lett. 2015, 6, 2081–2085. [CrossRef] [PubMed] 13. Brant, W.R.; Li, D.; Gu, Q.; Schmid, S. Comparative analysis of ex-situ and operando X-ray diffraction experiments for lithium insertion materials. J. Power Sources 2016, 302, 126–134. [CrossRef] 14. McBreen, J. The application of synchrotron techniques to the study of lithium-ion batteries. J. Solid State Electrochem. 2009, 13, 1051–1061. [CrossRef] 15. Lin, F.; Liu, Y.; Yu, X.; Cheng, L.; Singer, A.; Shpyrko, O.G.; Xin, H.L.; Tamura, N.; Tian, C.; Weng, T.C.; et al. Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries. Chem. Rev. 2017, 117, 13123–13186. [CrossRef] [PubMed] 16. Bak, S.M.; Shadike, Z.; Lin, R.; Yu, X.; Yang, X.Q. In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research. NPG Asia Mater. 2018, 10, 563–580. [CrossRef] 17. Doeff, M.M.; Chen, G.; Cabana, J.; Richardson, T.J.; Mehta, A.; Shirpour, M.; Duncan, H.; Kim, C.; Kam, K.C.; Conry, T. Characterization of electrode materials for lithium ion and sodium ion batteries using synchrotron radiation techniques. J. Vis. Exp. 2013, 1–9. [CrossRef] 18. Balasubramanian, M.; Sun, X.; Yang, X.Q.; Mcbreen, J. In situ X-ray diffraction and X-ray absorption studies.pdf. J. Power Sources 2001, 92, 1–8. [CrossRef] 19. Pramudita, J.C.; Aughterson, R.; Dose, W.M.; Donne, S.W.; Brand, H.E.A.; Sharma, N. Using in situ synchrotron x-ray diffraction to study lithium- and sodium-ion batteries: A case study with an unconventional battery electrode (Gd2TiO5). J. Mater. Res. 2015, 30, 381–389. [CrossRef] 20. Hu, C.W.; Chou, J.P.; Hou, S.C.; Hu, A.; Su, Y.F.; Chen, T.Y.; Liew, W.K.; Liao, Y.F.; Huang, J.L.; Chen, J.M.; et al. Cyclability evaluation on Si based Negative Electrode in Lithium ion Battery by Graphite Phase Evolution: An operando X-ray diffraction study. Sci. Rep. 2019, 9, 1–10. [CrossRef] 21. Cheng, X.; Pecht, M. In situ stress measurement techniques on li-ion battery electrodes: A review. Energies 2017, 10, 591. [CrossRef] 22. Koerver, R.; Zhang, W.; De Biasi, L.; Schweidler, S.; Kondrakov, A.O.; Kolling, S.; Brezesinski, T.; Hartmann, P.; Zeier, W.G.; Janek, J. Chemo-mechanical expansion of lithium electrode materials-on the route to mechanically optimized all-solid-state batteries. Energy Environ. Sci. 2018, 11, 2142–2158. [CrossRef] 23. Fan, C.; Zhao, Z. Synchrotron Radiation in Materials Science: Light Sources, Techniques, and Applications, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2018. 24. Mittemeijer, E.J.; Welzel, U. Modern Diffraction Methods; John Wiley & Sons: Hoboken, NJ, USA, 2013. 25. Chianelli, R.R.; Scanlon, J.C.; Rao, B.M.L. Dynamic X—Ray Diffraction. J. Electrochem. Soc. 1978, 125, 1563. [CrossRef] 26. Gustafsson, T.; Thomas, J.O.; Koksbang, R.; Farrington, G.C. The polymer battery as an environment for in situ X-ray diffraction studies of solid-state electrochemical processes. Electrochim. Acta 1992, 37, 1639–1643. [CrossRef] 27. Amatucci, G.G. CoO2, The End Member of the LixCoO2 Solid Solution. J. Electrochem. Soc. 1996, 143, 1114. [CrossRef] 28. Hartung, S.; Bucher, N.; Bucher, R.; Srinivasan, M. Note: Electrochemical cell for in operando X-ray diffraction measurements on a conventional X-ray diffractometer. Rev. Sci. Instrum. 2015, 86, 1–4. [CrossRef] [PubMed] 29. Reimers, J.N. Electrochemical and In Situ X-Ray Diffraction Studies of Lithium Intercalation in LixCoO2. J. Electrochem. Soc. 1992, 139, 2091. [CrossRef] 30. Richard, M.N. A Cell for In Situ X-Ray Diffraction Based on Coin Cell Hardware and Bellcore Plastic Electrode Technology. J. Electrochem. Soc. 1997, 144, 554. [CrossRef] 31. Roberts, G.A.; Stewart, K.D. Reflection-mode x-ray powder diffraction cell for in situ studies of electrochemical reactions. Rev. Sci. Instrum. 2004, 75, 1251–1254. [CrossRef] 32. Sottmann, J.; Pralong, V.; Barrier, N.; Martin, C. An electrochemical cell for operando bench-top X-ray diffraction. J. Appl. Crystallogr. 2019, 52, 485–490. [CrossRef]

PDF Image | Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries

PDF Search Title:

Synchrotron-Based X-ray Diffraction for Lithium-Ion Batteries

Original File Name Searched:

condensedmatter-05-00075.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)