Topological Dirac Semimetal Phase in Bismuth Based Anode Materials for Sodium-Ion Batteries

PDF Publication Title:

Topological Dirac Semimetal Phase in Bismuth Based Anode Materials for Sodium-Ion Batteries ( topological-dirac-semimetal-phase-bismuth-based-anode-materi )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 009

Condens. Matter 2020, 5, 39 9 of 9 35. Gao, Z.; Hua, M.; Zhang, H.; Zhang, X. Classification of stable Dirac and Weyl semimetals with reflection and rotational symmetry. Phys. Rev. B 2016, 93, 205109. [CrossRef] 36. Weng, H.; Dai, X.; Fang, Z. Topological semimetals predicted from first-principles calculations. J. Phys. Condens. Matter 2016, 28, 303001. [CrossRef] 37. Young, S.M.; Zaheer, S.; Teo, J.C.Y.; Kane, C.L.; Mele, E.J.; Rappe, A.M. Dirac Semimetal in Three Dimensions. Phys. Rev. Lett. 2012, 108, 140405. [CrossRef] 38. Liu, Z.K.; Zhou, B.; Zhang, Y.; Wang, Z.J.; Weng, H.M.; Prabhakaran, D.; Mo, S.K.; Shen, Z.X.; Fang, Z.; Dai, X.; et al. Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi. Science 2014, 343, 864–867. [CrossRef] 39. Xu, S.Y.; Liu, C.; Kushwaha, S.K.; Sankar, R.; Krizan, J.W.; Belopolski, I.; Neupane, M.; Bian, G.; Alidoust, N.; Chang, T.R.; et al. Observation of Fermi arc surface states in a topological metal. Science 2015, 347, 294–298. [CrossRef] 40. Cheng, X.; Li, R.; Sun, Y.; Chen, X.Q.; Li, D.; Li, Y. Ground-state phase in the three-dimensional topological Dirac semimetal Na3Bi. Phys. Rev. B 2014, 89, 245201. [CrossRef] 41. Jenkins, G.S.; Lane, C.; Barbiellini, B.; Sushkov, A.B.; Carey, R.L.; Liu, F.; Krizan, J.W.; Kushwaha, S.K.; Gibson, Q.; Chang, T.R.; et al. Three-dimensional Dirac cone carrier dynamics in Na3Bi and Cd3As2. Phys. Rev. B 2016, 94, 085121. [CrossRef] 42. Shao, D.; Ruan, J.; Wu, J.; Chen, T.; Guo, Z.; Zhang, H.; Sun, J.; Sheng, L.; Xing, D. Strain-induced quantum topological phase transitions in Na3Bi. Phys. Rev. B 2017, 96, 075112. [CrossRef] 43. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [CrossRef] 44. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [CrossRef] [PubMed] 45. Marzari, N.; Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 1997, 56, 12847–12865. [CrossRef] 46. Wu, Q.; Zhang, S.; Song, H.F.; Troyer, M.; Soluyanov, A.A. WannierTools: An open-source software package for novel topological materials. Comput. Phys. Commun. 2018, 224, 405–416. [CrossRef] 47. Momma, K.; Izumi, F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [CrossRef] 48. Guan, S.; Yu, Z.M.; Liu, Y.; Liu, G.B.; Dong, L.; Lu, Y.; Yao, Y.; Yang, S.A. Artificial gravity field, astrophysical analogues, and topological phase transitions in strained topological semimetals. NPJ Quantum Mater. 2017, 2, 23. [CrossRef] 49. Spicer, W.E. Photoemissive, Photoconductive, and Optical Absorption Studies of Alkali-Antimony Compounds. Phys. Rev. 1958, 112, 114–122. [CrossRef] 50. Bansil, A. Coherent-potential and average t-matrix approximations for disordered muffin-tin alloys. I. Formalism. Phys. Rev. B 1979, 20, 4025–4034. [CrossRef] 51. Bansil, A. Coherent-potential and average t-matrix approximations for disordered muffin-tin alloys. II. Application to realistic systems. Phys. Rev. B 1979, 20, 4035–4043. [CrossRef] 52. Liu, J.; Vanderbilt, D. Topological phase transitions in (Bi1−xInx)2Se3 and (Bi1−xSbx)2Se3. Phys. Rev. B 2013, 88, 224202. [CrossRef] 53. Huang, H.; Jin, K.H.; Liu, F. Alloy Engineering of Topological Semimetal Phase Transition in MgTa2−xNbxN3. Phys. Rev. Lett. 2018, 120, 136403. [CrossRef] [PubMed] 54. Bansil, A.; Kaprzyk, S.; Mijnarends, P.E.; Toboła, J. Electronic structure and magnetism of Fe3−xVxX (X = Si, Ga, and Al) alloys by the KKR-CPA method. Phys. Rev. B 1999, 60, 13396–13412. [CrossRef] 55. Lane, C.; Cao, D.; Li, H.; Jiao, Y.; Barbiellini, B.; Bansil, A.; Zhu, H. Understanding Phase Stability of Metallic 1T-MoS2 Anodes for Sodium-Ion Batteries. Condens. Matter 2019, 4, 53. [CrossRef] ⃝c 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

PDF Image | Topological Dirac Semimetal Phase in Bismuth Based Anode Materials for Sodium-Ion Batteries

PDF Search Title:

Topological Dirac Semimetal Phase in Bismuth Based Anode Materials for Sodium-Ion Batteries

Original File Name Searched:

condensedmatter-05-00039-v3.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)