logo

Understanding interface stability in solid-state batteries

PDF Publication Title:

Understanding interface stability in solid-state batteries ( understanding-interface-stability-solid-state-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 020

Reviews 86. Haruyama, J., Sodeyama, K. & Tateyama, Y. Cation mixing properties toward Co diffusion at the LiCoO2 cathode/sulfide electrolyte interface in a solid-state battery. ACS Appl. Mater. Interfaces 9, 286–292 (2016). 87. Xu, Z.-M., Bo, S.-H. & Zhu, H. LiCrS2 and LiMnS2 cathodes with extraordinary mixed electron-ion conductivities and favorable interfacial compatibilities with sulfide electrolyte. ACS Appl. Mater. Interfaces 10, 36941–36953 (2018). 88. Sicolo, S., Fingerle, M., Hausbrand, R. & Albe, K. Interfacial instability of amorphous LiPON against lithium: a combined density functional theory and spectroscopic study. J. Power Sources 354, 124–133 (2017). 89. Sumita, M., Tanaka, Y., Ikeda, M. & Ohno, T. Charged and discharged states of cathode/sulfide electrolyte interfaces in all-solid-state lithium ion batteries. J. Phys. Chem. C 120, 13332–13339 (2016). 90. Camacho-Forero, L. E. & Balbuena, P. B. Exploring interfacial stability of solid-state electrolytes at the lithium-metal anode surface. J. Power Sources 396, 782–790 (2018). 91. Tang, H. et al. Probing solid–solid interfacial reactions in all-solid-state sodium-ion batteries with first-principles calculations. Chem. Mater. 30, 163–173 (2017). 92. Liu, Z. et al. Anomalous high ionic conductivity of nanoporous β-Li3PS4. J. Am. Chem. Soc. 135, 975–978 (2013). 93. Hayashi, A., Muramatsu, H., Ohtomo, T., Hama, S. & Tatsumisago, M. Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M = Fe, Zn, and Bi) nanoparticles. J. Mater. Chem. A 1, 6320–6326 (2013). 94. Oh, G., Hirayama, M., Kwon, O., Suzuki, K. & Kanno, R. Bulk-type all solid-state batteries with 5 V class LiNi0.5Mn1.5O4 cathode and Li10GeP2S12 solid electrolyte. Chem. Mater. 28, 2634–2640 (2016). 95. Chu, I.-H. et al. Insights into the performance limits of the Li7P3S11 superionic conductor: a combined first-principles and experimental study. ACS Appl. Mater. Interfaces 8, 7843–7853 (2016). 96. Mo, Y., Ong, S. P. & Ceder, G. First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chem. Mater. 24, 15–17 (2012). 97. Han, F., Zhu, Y., He, X., Mo, Y. & Wang, C. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 6, 1–9 (2016). 98. Han, F., Gao, T., Zhu, Y., Gaskell, K. J. & Wang, C. A battery made from a single material. Adv. Mater. 27, 3473–3483 (2015). 99. Wu, X., Villevieille, C., Novák, P. & El Kazzi, M. Monitoring the chemical and electronic properties of electrolyte–electrode interfaces in all-solid-state batteries using operando X-ray photoelectron spectroscopy. Phys. Chem. Chem. Phys. 20, 11123–11129 (2018). 100. Bron, P. et al. Li10SnP2S12: an affordable lithium superionic conductor. J. Am. Chem. Soc. 135, 15694–15697 (2013). 101. Tarhouchi, I., Viallet, V., Vinatier, P. & Ménétrier, M. Electrochemical characterization of Li10SnP2S12: an electrolyte or a negative electrode for solid state Li-ion batteries? Solid State Ion. 296, 18–25 (2016). 102. Hakari, T. et al. Structural and electronic-state changes of a sulfide solid electrolyte during the Li deinsertion– insertion processes. Chem. Mater. 29, 4768–4774 (2017). 103. Swamy, T., Chen, X. & Chiang, Y.-M. Electrochemical redox behavior of Li-ion conducting sulfide solid electrolytes. Chem. Mater. 31, 707–713 (2019). 104. Zhang, W. et al. Degradation mechanisms at the Li10GeP2S12/LiCoO2 cathode interface in an all-solid- state lithium ion battery. ACS Appl. Mater. Interfaces 10, 22226–22236 (2018). 105. Lacivita, V., Wang, Y., Bo, S.-H. & Ceder, G. Ab initio investigation of the stability of electrolyte/electrode interfaces in all-solid-state Na batteries. J. Mater. Chem. A 7, 8144–8155 (2019). 106. Dean, J. A. Lange’s Handbook of Chemistry (McGraw-Hill, 1999). 107. Tsukasaki, H. et al. Exothermal mechanisms in the charged LiNi1/3Mn1/3Co1/3O2 electrode layers for sulfide-based all-solid-state lithium batteries. J. Power Sources 434, 226714 (2019). 108. Sang, L., Haasch, R. T., Gewirth, A. A. & Nuzzo, R. G. Evolution at the solid electrolyte/gold electrode interface during lithium deposition and stripping. Chem. Mater. 29, 3029–3037 (2017). 109. Wenzel, S. et al. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ion. 286, 24–33 (2016). 110. Choi, S.-J. et al. Synthesis and electrochemical characterization of a glass-ceramic Li7P2S8I solid electrolyte for all-solid-state Li-ion batteries. J. Electrochem. Soc. 165, A957–A962 (2018). 111. Bron, P., Roling, B. & Dehnen, S. Impedance characterization reveals mixed conducting interphases between sulfidic superionic conductors and lithium metal electrodes. J. Power Sources 352, 127–134 (2017). 112. Suyama, M., Kato, A., Sakuda, A., Hayashi, A. & Tatsumisago, M. Lithium dissolution/deposition behavior with Li3PS4-LiI electrolyte for all-solid-state batteries operating at high temperatures. Electrochim. Acta 286, 158–162 (2018). 113. Wu, E. A. et al. New insights into the interphase between the Na metal anode and sulfide solid-state electrolytes: a joint experimental and computational study. ACS Appl. Mater. Interfaces 10, 10076–10086 (2018). 114. Tian, Y. et al. Reactivity-guided interface design in Na metal solid-state batteries. Joule 3, 1037–1050 (2019). 115. Deng, Z., Zhu, Z., Chu, I.-H. & Ong, S. P. Data-driven first-principles methods for the study and design of alkali superionic conductors. Chem. Mater. 29, 281–288 (2017). 116. Auvergniot, J. et al. Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: an XPS study. Solid State Ion. 300, 78–85 (2017). 117. Auvergniot, J. et al. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries. Chem. Mater. 29, 3883–3890 (2017). 118. Wenzel, S. et al. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ion. 318, 102–112 (2018). 119. Walther, F. et al. Visualization of the interfacial decomposition of composite cathodes in argyrodite based all-solid-state batteries using time-of-flight secondary ion mass spectrometry. Chem. Mater. 31, 3745–3755 (2019). 120. Zhang, Z. et al. All-in-one improvement toward Li6PS5Br-based solid electrolytes triggered by compositional tune. J. Power Sources 410, 162–170 (2019). 121. Garca-Martn, S., Amador, U., Morata-Orrantia, A., Rodrguez-Carvajal, J. & Alario-Franco, M. Á. Structure, microstructure, composition and properties of lanthanum lithium titanates and some substituted analogues. Z. Anorg. Allg. Chem. 635, 2363–2373 (2009). 122. Ma, C. et al. Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion- conducting solid electrolytes. Energy Environ. Sci. 7, 1638–1642 (2014). 123. Xu, X., Wen, Z., Wu, J. & Yang, X. Preparation and electrical properties of NASICON-type structured Li1.4Al0.4Ti1.6(PO4)3 glass-ceramics by the citric acid-assisted sol–gel method. Solid State Ion. 178, 29–34 (2007). 124. Li, S. et al. Reaction mechanism studies towards effective fabrication of lithium-rich anti-perovskites Li3OX (X = Cl, Br). Solid State Ion. 284, 14–19 (2016). 125. Inaguma, Y. & Nakashima, M. A rechargeable lithium– air battery using a lithium ion-conducting lanthanum lithium titanate ceramics as an electrolyte separator. J. Power Sources 228, 250–255 (2013). 126. Schipper, F. et al. Recent advances and remaining challenges for lithium ion battery cathodes I. Nickel-Rich, LiNixCoyMnzO2. J. Electrochem. Soc. 164, A6220–A6228 (2017). 127. Antolini, E. & Ferretti, M. Synthesis and thermal stability of LiCoO2. J. Solid State Chem. 117, 1–7 (1995). 128. Park, K. et al. Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: interface between LiCoO2 and garnet-Li7La3Zr2O12. Chem. Mater. 28, 8051–8059 (2016). 129. Yoshinari, T. et al. Interfacial stability of phosphate- NASICON solid electrolytes in Ni-rich NCM cathode-based solid-state batteries. ACS Appl. Mater. Interfaces 11, 23244–23253 (2019). 130. Yu, S. et al. Monolithic all-phosphate solid-state lithium-ion battery with improved interfacial compatibility. ACS Appl. Mater. Interfaces 10, 22264–22277 (2018). 131. Qin, S. et al. Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity. Appl. Phys. Lett. 112, 113901 (2018). 132. Murugan, R., Ramakumar, S. & Janani, N. High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet. Electrochem. Comm. 13, 1373–1375 (2011). 133. Murugan, R., Weppner, W., Schmid-Beurmann, P. & Thangadurai, V. Structure and lithium ion conductivity of bismuth containing lithium garnets Li5La3Bi2O12 and Li6SrLa2Bi2O12. Mater. Sci. Eng. B 143, 14–20 (2007). 134. Thangadurai, V., Kaack, H. & Weppner, W. J. F. Novel fast lithium ion conduction in garnet-type Li5La3M2O2 (M = Nb, Ta). J. Am. Ceram. Soc. 86, 437–440 (2003). 135. Li, Y., Han, J.-T., Wang, C.-A., Xie, H. & Goodenough, J. B. Optimizing Li+ conductivity in a garnet framework. J. Mater. Chem. 22, 15357–15361 (2012). 136. Thangadurai, V. & Weppner, W. Li6ALa2Ta2O12 (A=Sr, Ba): novel garnet-like oxides for fast lithium ion conduction. Adv. Funct. Mater. 15, 107–112 (2005). 137. Li, Y. et al. Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries. J. Am. Chem. Soc. 140, 6448–6455 (2018). 138. Sharafi, A. et al. Impact of air exposure and surface chemistry on Li–Li7La3Zr2O12 interfacial resistance. J. Mater. Chem. A 5, 13475–13487 (2017). 139. Dai, J., Yang, C., Wang, C., Pastel, G. & Hu, L. Interface engineering for garnet-based solid-state lithium-metal batteries: materials, structures, and characterization. Adv. Mater. 30, 1802068 (2018). 140. Hofstetter, K., Samson, A. J., Narayanan, S. & Thangadurai, V. Present understanding of the stability of Li-stuffed garnets with moisture, carbon dioxide, and metallic lithium. J. Power Sources 390, 297–312 (2018). 141. Kotobuki, M. & Kanamura, K. Fabrication of all-solid- state battery using Li5La3Ta2O12 ceramic electrolyte. Ceram. Int. 39, 6481–6487 (2013). 142. Kotobuki, M., Kanamura, K., Sato, Y. & Yoshida, T. Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte. J. Power Sources 196, 7750–7754 (2011). 143. Rangasamy, E. et al. A high conductivity oxide–sulfide composite lithium superionic conductor. J. Mater. Chem. A 2, 4111–4116 (2014). 144. Jalem, R. et al. Experimental and first-principles DFT study on the electrochemical reactivity of garnet-type solid electrolytes with carbon. J. Mater. Chem. A 4, 14371–14379 (2016). 145. Miara, L. J., Richards, W. D., Wang, Y. E. & Ceder, G. First-principles studies on cation dopants and electrolyte|cathode interphases for lithium garnets. Chem. Mater. 27, 4040–4047 (2015). 146. Nakayama, M., Kotobuki, M., Munakata, H., Nogami, M. & Kanamura, K. First-principles density functional calculation of electrochemical stability of fast Li ion conducting garnet-type oxides. Phys. Chem. Chem. Phys. 14, 10008–10014 (2012). 147. Li, Y., Wang, C.-A., Xie, H., Cheng, J. & Goodenough, J. B. High lithium ion conduction in garnet-type Li6La3ZrTaO12. Electrochem. Comm. 13, 1289–1292 (2011). 148. Nemori, H. et al. Stability of garnet-type solid electrolyte LixLa3A2−yByO12 (A = Nb or Ta, B = Sc or Zr). Solid State Ion. 282, 7–12 (2015). 149. Kim, Y. et al. Electrochemical stability of Li6.5La3Zr1.5M0.5O12 (M= Nb or Ta) against metallic lithium. Front Energy Res. 4, 20 (2016). 150. Cheng, L. et al. Effect of microstructure and surface impurity segregation on the electrical and electrochemical properties of dense Al-substituted Li7La3Zr2O12. J. Mater. Chem. A 2, 172–181 (2014). 151. Yan, X. et al. A novel thin solid electrolyte film and its application in all-solid-state battery at room temperature. Ionics 24, 1545–1551 (2018). 152. Fingerle, M., Loho, C., Ferber, T., Hahn, H. & Hausbrand, R. Evidence of the chemical stability of the garnet-type solid electrolyte Li5La3Ta2O12 towards lithium by a surface science approach. J. Power Sources 366, 72–79 (2017). 153. Wolfenstine, J., Allen, J. L., Read, J. & Sakamoto, J. Chemical stability of cubic Li7La3Zr2O12 with molten lithium at elevated temperature. J. Mater. Sci. 48, 5846–5851 (2013). 154. Ma, C., Cheng, Y., Yin, K., Luo, J. & Sharafi, A. Interfacial stability of Li metal-solid electrolyte elucidated via in situ electron microscopy. Nano Lett. 16, 7030–7036 (2016). 155. Zhu, Y. et al. Dopant-dependent stability of garnet solid electrolyte interfaces with lithium metal. Adv. Energy Mater. 9, (1803440 (2019). 156. Rettenwander, D. et al. Interface instability of Fe-stabilized Li7La3Zr2O12 versus Li metal. J. Phys. Chem. C 122, 3780–3785 (2018). www.nature.com/natrevmats

PDF Image | Understanding interface stability in solid-state batteries

understanding-interface-stability-solid-state-batteries-020

PDF Search Title:

Understanding interface stability in solid-state batteries

Original File Name Searched:

2019_xiao_nature_review.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP