Understanding Phase Stability of Metallic 1T-MoS2 Anodes for Sodium-Ion Batteries

PDF Publication Title:

Understanding Phase Stability of Metallic 1T-MoS2 Anodes for Sodium-Ion Batteries ( understanding-phase-stability-metallic-1t-mos2-anodes-sodium )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 008

Condens. Matter 2019, 4, 53 8 of 8 6. Shu, H.; Li, F.; Hu, C.; Liang, P.; Cao, D.; Chen, X. The capacity fading mechanism and improvement of cycling stability in MoS2-based anode materials for lithium-ion batteries. Nanoscale 2016, 8, 2918–2926. [CrossRef] [PubMed] 7. Ahmed, B.; Anjum, D.H.; Hedhili, M.N.; Alshareef, H.N. Mechanistic insight into the stability of HfO2-coated MoS2 nanosheet anodes for sodium ion batteries. Small 2015, 11, 4341–4350. [CrossRef] 8. Jiao, Y.; Mukhopadhyay, A.; Ma, Y.; Yang, L.; Hafez, A.M.; Zhu, H. Ion transport nanotube assembled with vertically aligned metallic MoS2 for high rate lithium-ion batteries. Adv. Energy Mater. 2018, 8, 1702779. [CrossRef] 9. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [CrossRef] 10. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab-initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [CrossRef] 11. Kresse, G.; Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 1993, 48, 13115–13118. [CrossRef] 12. Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [CrossRef] [PubMed] 13. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [CrossRef] [PubMed] 14. Tan, S.J.R.; Sarkar, S.; Zhao, X.; Luo, X.; Luo, Y.Z.; Poh, S.M.; Abdelwahab, I.; Zhou, W.; Venkatesan, T.; Chen, W.; et al. Temperature- and phase-dependent phonon renormalization in 1T’-MoS2. ACS Nano 2018, 12, 5051–5058. [CrossRef] [PubMed] 15. Yin, X.; Wang, Q.; Cao, L.; Tang, C.S.; Luo, X.; Zheng, Y.; Wong, L.M.; Wang, S.J.; Quek, S.Y.; Zhang, W.; et al. Tunable inverted gap in monolayer quasi-metallic MoS2 induced by strong charge-lattice coupling. Nat. Commun. 2017, 8, 486. [CrossRef] 16. Voiry, D.; Mohite, A.; Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702–2712. [CrossRef] [PubMed] 17. Mortazavi, M.; Wang, C.; Deng, J.; Shenoy, V.B.; Medhekar, N.V. Ab initio characterization of layered MoS2 as anode for sodium-ion batteries. J. Power Sources 2014, 268, 279–286. [CrossRef] 18. Kühne, M.; Börrnert, F.; Fecher, S.; Ghorbani-Asl, M.; Biskupek, J.; Samuelis, D.; Krasheninnikov, A.V.; Kaiser, U.; Smet, J.H. Reversible superdense ordering of lithium between two graphene sheets. Nature 2018, 564, 234. [CrossRef] [PubMed] 19. Wang, X.; Shen, X.; Wang, Z.; Yu, R.; Chen, L. Atomic-scale clarification of structural transition of MoS2 upon sodium intercalation. ACS Nano 2014, 8, 11394–11400. [CrossRef] 20. Wilson, J.A.; Yoffe, A.D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193–335. [CrossRef] 21. Kertesz, M.; Hoffmann, R. Octahedral vs. trigonal-prismatic coordination and clustering in transition-metal dichalcogenides. J. Am. Chem. Soc. 1984, 106, 3453–3460. [CrossRef] © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

PDF Image | Understanding Phase Stability of Metallic 1T-MoS2 Anodes for Sodium-Ion Batteries

PDF Search Title:

Understanding Phase Stability of Metallic 1T-MoS2 Anodes for Sodium-Ion Batteries

Original File Name Searched:

condensedmatter-04-00053.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)