XAFS and XRD Study of a Prussian Blue Analogue Cathode Iron Hexacyanocobaltate

PDF Publication Title:

XAFS and XRD Study of a Prussian Blue Analogue Cathode Iron Hexacyanocobaltate ( xafs-and-xrd-study-prussian-blue-analogue-cathode-iron-hexac )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 012

Condens. Matter 2018, 3, 36 12 of 13 33. Mullica, D.F.; Oliver, J.D.; Milligan, W.O.; Hills, F.W. Ferrous hexacyanocobaltate dodecahydrate. Inorg. Nucl. Chem. Lett. 1979, 15, 361–365. [CrossRef] 34. Adak, S.; Daemen, L.L.; Hartl, M.; Williams, D.; Summerhill, J.; Nakotte, H. Thermal expansion in 3d-metal Prussian Blue Analogs—A survey study. J. Solid State Chem. 2011, 184, 2854–2861. [CrossRef] 35. Aquilanti, G.; Giorgetti, M.; Dominko, R.; Stievano, L.; Arcˇon, I.; Novello, N.; Olivi, L. Operando characterization of batteries using x-ray absorption spectroscopy: Advances at the beamline XAFS at synchrotron Elettra. J. Phys. D Appl. Phys. 2017, 50, 074001. [CrossRef] 36. Giorgetti, M.; Mignani, A.; Aquilanti, G.; Conti, P.; Fehse, M.; Stievano, L. Structural and electronic studies of metal hexacyanoferrates based cathodes for Li rechargeable batteries. J. Phys. Conf. Ser. 2016, 712, 012127. [CrossRef] 37. De Juan, A.; Jaumot, J.; Tauler, R. Multivariate Curve Resolution (MCR). Solving the mixture analysis problem. Anal. Methods 2014, 6, 4964–4976. [CrossRef] 38. Berrettoni, M.; Giorgetti, M.; Zamponi, S.; Conti, P.; Ranganathan, D.; Zanotto, A.; Saladino, M.L.; Caponetti, E. Synthesis and characterization of nanostructured cobalt hexacyanoferrate. J. Phys. Chem. C 2010, 114, 6401–6407. [CrossRef] 39. Giorgetti, M.; Aquilanti, G.; Ciabocco, M.; Berrettoni, M. Anatase-driven charge transfer involving a spin transition in cobalt iron cyanide nanostructures. Phys. Chem. Chem. Phys. 2015, 17, 22519–22522. [CrossRef] [PubMed] 40. Hayakawa, K.; Hatada, K.; D’Angelo, P.; Della Longa, S.; Natoli, C.R.; Benfatto, M. Full quantitative multiple-scattering analysis of X-ray absorption spectra: Application to potassium hexacyanoferrate(II) and–(III) complexes. J. Am. Chem. Soc. 2004, 126, 15618–15623. [CrossRef] [PubMed] 41. Bianconi, A.; Dell’Ariccia, M.; Durham, P.J.; Pendry, J.B. Multiple-scattering resonances and structural effects in the x-ray-absorption near-edge spectra of FeII and FeIII hexacyanide complexes. Phys. Rev. B 1982, 26, 6502–6508. [CrossRef] 42. Kosugi, N.; Yokoyama, T.; Kuroda, H. Polarization dependence of XANES of square-planar Ni(CN)42− ion. A comparison with octahedral Fe(CN)64− and Fe(CN)63− ions. Chem. Phys. 1986, 104, 449–453. [CrossRef] 43. Giorgetti, M.; Berrettoni, M. Structure of Fe/Co/Ni hexacyanoferrate as probed by multiple edge X-ray absorption spectroscopy. Inorg. Chem. 2008, 47, 6001–6008. [CrossRef] [PubMed] 44. Hannauer, J.; Scheers, J.; Fullenwarth, J.; Fraisse, B.; Stievano, L.; Johansson, P. The Quest for Polysulfides in Lithium-Sulfur Battery Electrolytes: An Operando Confocal Raman Spectroscopy Study. Chem. Phys. Chem. 2015, 16, 2755–2759. [CrossRef] [PubMed] 45. Rebuffi, L.; Plaisier, J.R.; Abdellatief, M.; Lausi, A.; Scardi, A.P. Mcx: A synchrotron radiation beamline for X-ray diffraction line profile analysis. Z. Anorg. Allg. Chem. 2014, 640, 3100–3106. [CrossRef] 46. Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Phys. Condens. Matter 1993, 192, 55–69. [CrossRef] 47. Yao, M.; Kuratani, K.; Kojima, T.; Takeichi, N.; Senoh, H.; Kiyobayashi, T. Indigo carmine: An organic crystal as a positive-electrode material for rechargeable sodium batteries. Sci. Rep. 2014, 4, 3650. [CrossRef] [PubMed] 48. Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [CrossRef] 49. Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541. [CrossRef] [PubMed] 50. Filipponi, A.; Di Cicco, A.; Natoli, C.R. X-ray-absorption spectroscopy and n-body distribution functions in condensed matter. I. Theory. Phys. Rev. B 1995, 52, 15122–15134. [CrossRef] 51. Filipponi, A.; Di Cicco, A. X-ray-absorption spectroscopy and n-body distribution functions in condensed matter. II. Data analysis and applications. Phys. Rev. B 1995, 52, 15135–15149. [CrossRef] 52. Giorgetti, M.; Berrettoni, M.; Filipponi, A.; Kulesza, P.J.; Marassi, R. Evidence of four-body contributions in the EXAFS spectrum of Na2Co[Fe(CN)6]. Chem. Phys. Lett. 1997, 275, 108–112. [CrossRef] 53. Giorgetti, M.; Guadagnini, L.; Tonelli, D.; Minicucci, M.; Aquilanti, G. Structural characterization of electrodeposited copper hexacyanoferrate films by using a spectroscopic multi-technique approach. Phys. Chem. Chem. Phys. 2012, 14, 5527–5537. [CrossRef] [PubMed]

PDF Image | XAFS and XRD Study of a Prussian Blue Analogue Cathode Iron Hexacyanocobaltate

PDF Search Title:

XAFS and XRD Study of a Prussian Blue Analogue Cathode Iron Hexacyanocobaltate

Original File Name Searched:

condensedmatter-03-00036.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)