PDF Publication Title:
Text from PDF Page: 014
486 D. PATRA AND R. EL KURDI [60] Shaabani, E.; Amini, S.M.; Kharrazi, S.; Tajerian, R. Curcumin Coated Gold Nanoparticles: Synthesis, Characterization, Cytotoxicity, Antioxidant Activity and its Comparison with Citrate Coated Gold Nanoparticles. Nanomedicine 2017, 4 (2), 115–125. [61] Abdulwahab, F.; Henari, F.Z.; Cassidy, S.; Winser, K. Synthesis of Au, Ag, Curcumin Au/Ag, and Au-Ag Nanoparticles and Their Nonlinear Refractive Index Properties. J. Nanomater. 2016, 2016, 1–8. [62] El Kurdi, R.; Patra, D. Capping of Supramolecular Curcubit [7]Uril Facilitates Formation of Au Nanorods During pre- Reduction by Curcumin. Colloids Surfaces A Physicochem. Eng. Asp. 2018, 553, 97–104. [63] El Kurdi, R.; Patra, D. Nanosensing of ATP by Fluorescence Recovery After Surface Energy Transfer Between Rhodamine B and Curcubit[7]Uril-Capped Gold nanopar- ticles. Microchim. Acta 2018, 185 (7), 1–8. [64] El Kurdi, R.; Patra, D. Gold Nanoparticles Functionalized with Pluronic are Viable Optical Probes for the Determination of Uric Acid. Microchim. Acta 2018, 2, 1–7. [65] El Kurdi, R.; Patra, D. The Role of OH − in the Formation of Highly Selective Gold Nanowires at Extreme pH: Multi- Fold Enhancement in the Rate of the Catalytic Reduction Reaction by Gold Nanowires. Phys. Chem. Chem. Phys. 2017, 19 (7), 5077–5090. [74] Khan, M.J.; Shameli, K.; Sazili, A.Q.; Selamat, J.; Kumari, S. Rapid Green Synthesis and Characterization of Silver Nanoparticles Arbitrated by Curcumin in an Alkaline Medium. Molecules 2019, 24 (4), 1–12. [75] Shameli, K.; Ahmad, M.B.; Zamanian, A.; Sangpour, P.; Shabanzadeh, P.; Abdollahi, Y.; Zargar, M. Green Biosynthesis of Silver Nanoparticles Using Curcuma Longa Tuber Powder. Int. J. Nanomedicine 2012, 2012, 5603–5610. [76] Shameli, K.; Ahmad, M.B.; Shabanzadeh, P.; Al-Mulla, E.A.J.; Zamanian, A.; Abdollahi, Y.; Jazayeri, S.D.; Eili, M.; Jalilian, F.A.; Haroun, R.Z. Effect of Curcuma Longa Tuber Powder Extract on Size of Silver Nanoparticles Prepared by Green Method. Res. Chem. Intermed. 2014, 40 (3), 1313–1325. [77] Al-Namil, D.S.; El Khoury, E.; Patra, D. Solid-State Green Synthesis of Ag NPs: Higher Temperature Harvests Larger Ag NPs but Smaller Size Has Better Catalytic Reduction Reaction. Sci. Rep. 2019, 9 (1), 1–9. [78] Al-Namil, D.; Patra, D. Green Solid-State Based Curcumin Mediated Rhamnolipids Stabilized Silver Nanoparticles: Interaction of Silver Nanoparticles with Cystine and Albumins Towards Fluorescence Sensing. Colloids Surfaces B Biointerfaces 2019, 173, 647–653. [79] El Khoury, E.; Abiad, M.; Kassaify, Z.G.; Patra, D. Green Synthesis of Curcumin Conjugated Nanosilver for the Applications in Nucleic Acid Sensing and Anti-Bacterial Activity. Colloids Surfaces B Biointerfaces 2015, 127, 274– [66] Moussawi, R.N.; Patra, D. Synthesis of Au Nanorods Through Prereduction with Curcumin: Preferential Enhancement of Au Nanorod Formation Prepared from 280. CTAB-Capped Over Citrate-Capped Au Seeds. J. Phys. Chem. C 2015, 119 (33), 19458–19468. [67] Patra, D.; Moussawi, R.N. Curcumin Conjugated Gold Nanoparticles for Nucleic Acid Sensing. IEEE Int. Conf. Nanotechnol. 2016, 401–404. [68] El Kurdi, R.; Patra, D. Amplification of Resonance Rayleigh Scattering of Gold Nanoparticles by Tweaking Into Nanowires: Bio-Sensing of ?-Tocopherol by Enhanced Resonance Rayleigh Scattering of Curcumin Capped Gold Nanowires Through non-Covalent Interaction. Talanta 2017, 168, 82–90. [69] Kundu, S.; Nithiyanantham, U. In Situ Formation of Curcumin Stabilized Shape-Selective Ag Nanostructures in Aqueous Solution and Their Pronounced SERS Activity. RSC Adv. 2013, 3 (47), 25278–25290. [70] Verma, A.D.; Jain, N.; Singha, S.K.; Quraishi, M.A.; Sinha, I. Green Synthesis and Catalytic Application of Curcumin Stabilized Silver Nanoparticles. J. Chem. Sci. 2016, 128 (12), 1871–1878. [71] Selvan, A.D.; Mahendiran, D.; Senthil Kumar, R.; Kalilur Rahiman, A. Garlic, Green tea and Turmeric Extracts- Mediated Green Synthesis of Silver Nanoparticles: Phytochemical, Antioxidant and in Vitro Cytotoxicity Studies. J. Photochem. Photobiol. B Biol. 2018, 180, 243– 252. [72] Alsammarraie, F.K.; Wang, W.; Zhou, P.; Mustapha, A.; Lin, M. Green Synthesis of Silver Nanoparticles Using Turmeric Extracts and Investigation of Their Antibacterial Activities. Colloids Surfaces B Biointerfaces 2018, 171, 398–405. [73] Sathishkumar, M.; Sneha, K.; Yun, Y. Immobilization of Silver Nanoparticles Synthesized Using Curcuma Longa Tuber Powder and Extract on Cotton Cloth for Bactericidal Activity. Bioresour. Technol. 2010, 101 (20), 7958–7965. [80] Yang, X.X.; Li, C.M.; Huang, C.Z. Curcumin Modified Silver Nanoparticles for Highly Efficient Inhibition of Respiratory Syncytial Virus Infection Xiao. Nanoscales 2016, 3, 1–9. [81] Abdelghany, A.M.; Oraby, A.H.; Hindi, A.A.; El-Nagar, D.M.; Alhakami, F.S. Green Synthesis of Mixed Metallic Nanoparticles Using Room Temperature Self-Assembly. J. Adv. Phys. 2017, 13 (2), 4671–4677. [82] Sankar, R.; Rahman, P.K.; Varunkumar, K.; Anusha, C.; Kalaiarasi, A.; Shivashangari, K.S.; Ravikumar, V. Facile Synthesis of Curcuma Longa Tuber Powder Engineered Metal Nanoparticles for Bioimaging Applications. J. Mol. Struct. 2017, 1129, 8–16. [83] Jayarambabu, N.; Akshaykranth, A.; Venkatappa Rao, T.; Venkateswara Rao, K.; Rakesh Kumar, R. Green Synthesis of Cu Nanoparticles Using Curcuma Longa Extract and Their Application in Antimicrobial Activity. Mater. Lett. 2020, 259, 1–11. [84] Jayandran, M.; Muhamed Haneefa, M.; Balasubramanian, V. Green Synthesis and Characterization of Manganese Nanoparticles Using Natural Plant Extracts and its Evaluation of Antimicrobial Activity. J. Appl. Pharm. Sci. 2015, 5 (12), 105–110. [85] Nikolova, M.P.; Chavali, M.S. Metal Oxide Nanoparticles as Biomedical Materials. Biomimetics. 2020, 5 (27), 1–47. [86] Mishra, P.K.; Mishra, H.; Ekielski, A.; Talegaonkar, S.; Vaidya, B. Zinc Oxide Nanoparticles: a Promising Nanomaterial for Biomedical Applications. Drug Discov. Today 2017, 22 (12), 1825–1834. [87] Varaprasad, K.; Yallapu, M.M.; Jayaramudu, T.; Karthikeyan, C. Generation of Engineered Core–Shell Antibiotic Nanoparticles. RSC Adv. 2019, 9, 8326–8332. [88] Arab, C.; El Kurdi, R.; Patra, D. Chitosan Coated Zinc Curcumin Oxide Nanoparticles for the Determination of Ascorbic Acid. J. Mol. Liq. 2021, 328, 1–7.PDF Image | Curcumin as a novel agent for metallic nanoparticles
PDF Search Title:
Curcumin as a novel agent for metallic nanoparticlesOriginal File Name Searched:
Curcumin-nanoparticles.pdfDIY PDF Search: Google It | Yahoo | Bing
CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info
Heat Pumps CO2 ORC Heat Pump System Platform More Info
CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP |