Curcumin-Dye-Sensitized Solar Cells

PDF Publication Title:

Curcumin-Dye-Sensitized Solar Cells ( curcumin-dye-sensitized-solar-cells )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 008

60 Suyitno, et al. /International Energy Journal 18 (2018) 53 – 60 [10] Rein M. 2005. Copigmentation reactions and color stability of berry anthocyanins. Applied Chemistry and Microbiology. Helsinki, Finland, University of Helsinki. MS Thesis, unpublished. [11] Patrocínio A.O.T., Mizoguchi S.K., Paterno L.G., Garcia C.G., and Iha N.Y.M., 2009. Efficient and low cost devices for solar energy conversion: Efficiency and stability of some natural-dye- sensitized solar cells. Synthetic Metals 159(21-22): 2342–2344. [12] Sandiningtyas R.D. and V . Suendo. 2010. Isolation of chlorophyll a from spinach and its modification using fe2+ in photostability study. In Proceedings of the Third International Conference on Mathematics and Natural Sciences, Inorganic and Physical Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung. [13] Leung M.H.M., Mohan P., Pukala T.L., Scanlon D.B., Lincoln S.F., and Kee T.W., 2012. Reduction of copper(ii) to copper(i) in the copper- curcumin complex induces decomposition of curcumin. Australian Journal of Chemistry 65(5): 490-495. [14] Sreekala C., Jinchu I., Sreelatha K., Janu Y., Prasad N., Kumar M., Sadh A.K., and Roy M., 2012. Influence of solvents and surface treatment on photovoltaic response of dssc based on natural curcumin dye. IEEE Journal of Photovoltaics 2(3): 312-319. [15] Agustia Y .V ., Suyitno, Arifin Z., and Sutanto B., 2016. Effect of acidity on the energy level of curcumin dye extracted from curcuma longa l. AIP Conference Proceedings 1717(1): 040005. [16] Suyitno, Zainal A., Ahmad A.S., Argatya T.S., and Ubaidillah. 2014. Optimization parameters and synthesis of fluorine doped tin oxide for dye- sensitized solar cells. Applied Mechanics and Materials 575: 689-695. [17] Kulkarni S.J., Maske K.N., Budre M.P., and Mahajan R.P., 2012. Extraction and purification of curcuminoids from turmeric (curcuma longa l.). International Journal of Pharmacology and Pharmaceutical Technology (IJPPT) 1: 81-84. [18] Shalini S., Prabhu R.B., Prasanna S., Mallick T.K., and Senthilarasu S., 2015. Review on natural dye sensitized solar cells: Operation, materials and methods. Renewable and Sustainable Energy Reviews 51: 20. [19] Halme J., 2002. Dye-sensitized nanostructured and organic photovoltaic cells: Technical review and preliminary tests. Departement of Engineering Physics and Mathematics, Helsinki University of Technology, Master Degree, unpublished. [20] Nazeeruddin M.K., Baranoff E., and Gratzel M., 2011. Dye-sensitized solar cells: A brief overview. Solar Energy 85: 7. [21] Patra D. and C. Barakat. 2011. Synchronous fluorescence spectroscopic study of solvatochromic curcumin dye. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 79(5): 1034-1041. [22] Masek A., Chrzescijanska E. and Zaborski M., 2013. Characteristics of curcumin using cyclic voltammetry, uv–vis, fluorescence and thermogravimetric analysis. Electrochimica Acta 107: 441-447. [23] Narayan M.R., 2012. Review: Dye sensitized solar cells based on natural photosensitizer. Renewable and Sustainable Energy Reviews 16(1): 208–215. [24] Esparan V., Krings U., Struch M., and Berger R.G., 2015. A three-enzyme-system to degrade curcumin to natural vanillin. Molecules 20: 6640- 6653. [25] Gordon O.N. and C. Schneider. 2012. Vanillin and ferulic acid are not the major degradation products of curcumin. Trends in molecular medicine 18(7): 361-364. [26] Ooyama Y. And Y. Harima. 2012. Photophysical and electrochemical properties, and molecular structures of organic dyes for dye-sensitized solar cells. Chemphyschem 13: 4032-4080. [27] Sreekala C.O., Jinchu I., Sreelatha K.S., Janu Y., Prasad N., Kumar M., Sadh A.K., and Roy M.S., 2012. Influence of solvents and surface treatment on photovoltaic response of dssc based on natural curcumin dye. IEEE Journal of Photovoltaics 2: 8. [28] Wang Z.-S., Kawauchi H., Kashima T., and Arakawa H., 2004. Significant influence of tio 2 photoelectrode morphology on the energy conversion efficiency of n719 dye-sensitized solar cell. Coordination Chemistry Reviews 248(13): 1381-1389. [29] Agus S., Amrina M., Maya A., Ari H.R., Suyitno, Erlyta Septa R., Yofentina and Fahru N., 2016. Fabrication of organic solar cells with design blend p3ht: Pcbm variation of mass ratio. IOP Conference Series: Materials Science and Engineering 107(1): 012050. [30] Hosseinnezhad M., Moradian S. and Gharanjig K., 2015. Natural dyes extracted from black carrot and bramble for dye-sensitized solar cells. Prog. Color Colorants Coat 8: 153-158. [31] Basuki, Hidajat R.L.L.G., Suyitno, Kristiawan B., and Rachmanto R.A., 2017. Effect of sintering time on the performance of turmeric dye- sensitized solar cells. AIP Conference Proceedings 1788(1): 030010. www.rericjournal.ait.ac.th

PDF Image | Curcumin-Dye-Sensitized Solar Cells

PDF Search Title:

Curcumin-Dye-Sensitized Solar Cells

Original File Name Searched:

10988664.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)