Electrochemical Detection of Curcumin

PDF Publication Title:

Electrochemical Detection of Curcumin ( electrochemical-detection-curcumin )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 006

1118 ANALYTICAL SCIENCES SEPTEMBER 2020, VOL. 36 two oxidation peaks were observed. In the first scan, only the irreversible peak (Peak I) was observed at a higher potential. In the second scan, the reversible redox peak pairs (Peaks II and II′) appeared at a lower potential, while the potential of Peak I was decreased. Peak I corresponded to the oxidation of the hydroxyl groups of the benzene ring to the catechol group via a phenoxy radical, while Peaks II and II′ were indicative of the redox loop system of the generated catechol group. The electrochemical behavior of curcumin could be explained by the ECE mechanism. The current of Peak II was used to quantify the concentration of curcumin in the linear range of 1 – 48 μM and detection limit of 0.1 μM. The concentration of curcumin in real food samples, as determined by the CNT-CMC electrode, was consistent with that determined by HPLC. Acknowledgements We would like to thank Editage (www.editage.com) for English language editing. Supporting Information Cyclic voltammograms of caffeic acid, 3,4-dihydroxy-5- methoxycinnamic acid, and guaiacol, plot of peak position versus pH of curcumin, and standard addition experiment. This material is available free of charge on the Web at http://www. jsac.or.jp/analsci/. References 1. T. Tsuda, Food Funct., 2018, 9, 705. 2. M. A. V. Carmo, C. G. Pressete, M. J. Marques, D. Granato, and L. Azevedo, Food Sci., 2018, 24, 26. 3. R. A. Silva-Buzanello, A. C. Feroo, E. Bona, L. Cardozo- Filho, P. H. H. Araújo, F. V. Leimann, and O. H. Gonçalves, Food Chem., 2015, 172, 99. 4. Z. Chen, L. Zhu, T. Song, J. Chen, and Z. Guo, Spectrochim. Acta, Part A, 2009, 72, 518. 5. R. S. P. Singh, U. Das, J. R. Dimmock, and J. Alcorn, J. Chromatogr., B, 2010, 878, 2796. 6. M. Afzali, A. Mostafavi, and T. Shamspur, Mater. Sci. Eng., C, 2016, 68, 789. 7. J. Peng, K. Nong, and L. Cen, J. Chin. Chem. Soc., 2012, 59, 1415. 8. G. K. Ziyatdinova, A. M. Nizamova, and H. C. Budnikov, J. Anal. Chem., 2012, 67, 651. 9. P. Daneshagar, P. Norouzi, A. A. Moosavi-Movahedi, M. R. Ganjali, E. Haghshenas, F. Dousty, and M. Farhadi, J. Appl. Electrochem., 2009, 39, 1983. 10. S. Çaır, E. Biçer, and E. Y. Arslan, Croat. Chem. Acta, 2015, 88, 105. 11. Z. Stanic ́ , A. Voulgaropoulos, and S. Girousi, Electroanalysis, 2008, 20, 1263. 12. R. M. Shereema, T. P. Rao, V. B. S. Kumar, T. V. Sruthi, R. Vishnu, G. R. D. Prabhu, and S. S. Shankar, Mater. Sci. Eng., C, 2018, 93, 21. 13. M. M. Dávila, M. S. Flores, and M. P. Elizalde, ECS Trans., 2008, 15, 447. 14. S. Murakami, S. Takahashi, H. Muguruma, N. Osakabe, H. Inoue, and T. Ohsawa, Anal Sci., 2019, 35, 529. 15. R. Chokkareddy, G. G. Redhi, and T. Karthick, Heliyon, 2019, 5, e01457. 16. M. Arvand, M. Farahpour, and M. S. Ardaki, Talanta, 2018, 176, 92. 17. H. Muguruma, S. Murakami, S. Takahashi, N. Osakabe, H. Inoue, and T. Ohsawa, J. Agric. Food Chem., 2019, 67, 943. 18. S. Takahashi, H. Muguruma, N. Osakabe, H. Inoue, and T. Ohsawa, Electrochemistry, 2019, 87, 242. 19. H. Muguruma, Y. Inoue, H. Inoue, and T. Ohsawa, J. Phys. Chem. C, 2016, 120, 12284. 20. H. Muguruma, H. Iwasa, H. Hidaka, A. Hiratsuka, and H. Uzawa, ACS Catal., 2017, 7, 725. 21. L. P. Souza, F. Calegari, A. J. G. Zarbin, L. H. Marcolino- Júnior, and M. F. Bergamini, J. Agric. Food Chem., 2011, 59, 7620. 22. S. Gunckel, P. Santander, G. Cordano, J. Ferreira, S. Munoz, L. J. Nunez-Vergara, and J. A. Squella, Chemico— Biol. Interac., 1998, 114, 45. 23. S. K. Trabelsi, N. B. Tahar, B. Trabelsi, and R. J. Abdelhedi, Appl. Electrochem., 2005, 35, 967. 24. M. A. N. Mamaia, V. C. Diculescu, E. S. Gil, and A. M. Oliveira-Brett, J. Electroanal. Chem., 2012, 682, 83. 25. E. Laviron, J. Electroanal. Chem., 1979, 100, 263.

PDF Image | Electrochemical Detection of Curcumin

PDF Search Title:

Electrochemical Detection of Curcumin

Original File Name Searched:

36_20P021.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)