Growth-Inhibitory Effect of Chitosan-Coated Liposomes Encapsulating Curcumin

PDF Publication Title:

Growth-Inhibitory Effect of Chitosan-Coated Liposomes Encapsulating Curcumin ( growth-inhibitory-effect-chitosan-coated-liposomes-encapsula )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 011

Mar. Drugs 2020, 18, 217 11 of 11 44. Mishra, S.; Kapoor, N.; Ali, A.M.; Pardhasaradhi, B.V.V.; Kumari, A.L.; Khar, A.; Misra, K. Differential apoptotic and redox regulatory activities of curcumin and its derivatives. Free Radic. Biol. Med. 2005, 38, 1353–1360. [CrossRef] [PubMed] 45. Sandur, S.K.; Ichikawa, H.; Pandey, M.K.; Kunnumakkara, A.B.; Sung, B.; Sethi, G.; Aggarwal, B.B. Role of pro-oxidants and antioxidants in the anti-inflammatory and apoptotic effects of curcumin (diferuloylmethane). Free Radic. Biol. Med. 2007, 43, 568–580. [CrossRef] [PubMed] 46. Chen, J.; Da, W.M.; Zhang, D.W.; Liu, Q.; Kang, J.H. Water-soluble antioxidants improve the antioxidant and anticancer activity of low concentrations of curcumin in human leukemia cells. Pharmazie 2005, 60, 57–61. [PubMed] 47. Kunwar, A.; Barik, A.; Mishra, B.; Rathinasamy, K.; Pandey, R.; Priyadarsini, K.I. Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells. Biochim. Biophys. Acta Gen. Subj. 2008, 1780, 673–679. [CrossRef] [PubMed] 48. Mirgani, M.T.; Isacchi, B.; Sadeghizadeh, M.; Marra, F.; Bilia, N.R.; Mowla, S.E.J.; Najafi, F.; Babaei, E.S. Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells. Int. J. Nanomed. 2014, 9, 403–417. 49. Singer, S.J. Some early history of membrane molecular biology. Ann. Rev. Physiol. 2004, 66, 1–27. [CrossRef] 50. Rahman, M.M.; Veigas, J.M.; Williams, P.J.; Fernandes, G. DHA is a more potent inhibitor of breast cancer metastasis to bone and related osteolysis than EPA. Breast Cancer Res. Treat. 2013, 141, 341–352. [CrossRef] 51. Sharma, G.; Rani, I.; Bhatnagar, A.; Agnihotri, N. Apoptosis-Mediated Chemoprevention by Different Ratios of Fish Oil in Experimental Colon Carcinogenesis. Cancer Investig. 2016, 34, 220–230. [CrossRef] 52. Haqq, J.; Howells, L.M.; Garcea, G.; Dennison, A.R. Targeting pancreatic cancer using a combination of gemcitabine with the omega-3 polyunsaturated fatty acid emulsion, Lipidem TM. Mol. Nutr. Food Res. 2016, 60, 1437–1447. [CrossRef] 53. Linder, M.; Matouba, E.; Fanni, J.; Parmentier, M. Enrichment of salmon oil with n-3 PUFA by lipolysis, filtration and enzymatic re-esterification. Eur. J. Lipid Sci. Technol. 2002, 104, 455–462. [CrossRef] 54. Maherani, B.; Arab-Tehrany, E.; Kheirolomoom, A.; Cleymand, F.; Linder, M. Influence of lipid composition on physicochemical properties of nanoliposomes encapsulating natural dipeptide antioxidant l-carnosine. Food Chem. 2012, 134, 632–640. [CrossRef] 55. Kirstein, S.L.; Atienza, J.M.; Xi, B.; Zhu, J.; Yu, N.C.; Wang, X.B.; Xu, X.; Abassi, Y.A. Live cell quality control and utility of real-time cell electronic sensing for assay development. Assay Drug Dev. Technol. 2006, 4, 545–553. [CrossRef] [PubMed] 56. Yu, N.; Atienza, J.M.; Bernard, J.; Blanc, S.; Zhu, J.; Wang, X.; Xu, X.; Abassi, Y.A. Real-Time Monitoring of Morphological Changes in Living Cells by Electronic Cell Sensor Arrays: An Approach To Study G Protein-Coupled Receptors. Anal. Chem. 2005, 78, 35–43. [CrossRef] [PubMed] 57. Atienza, J.M.; Zhu, J.; Wang, X.B.; Xu, X.; Abassi, Y. Dynamic monitoring of cell adhesion and spreading on microelectronic sensor arrays. J. Biomol. Screen. 2005, 10, 795–805. [CrossRef] © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

PDF Image | Growth-Inhibitory Effect of Chitosan-Coated Liposomes Encapsulating Curcumin

PDF Search Title:

Growth-Inhibitory Effect of Chitosan-Coated Liposomes Encapsulating Curcumin

Original File Name Searched:

836c1ae26776a79725d4c4adee6113bbdd36.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)