Nanocurcumin Promising Candidate for Therapeutic Applications

PDF Publication Title:

Nanocurcumin Promising Candidate for Therapeutic Applications ( nanocurcumin-promising-candidate-therapeutic-applications )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 017

Karthikeyan et al. Nanocurcumin: A Promising Candidate for Therapeutic Applications specific and in this sense, they are just delivered onto the healthy tissues found around the tumor or cancer cells. So, larger attention may be focused on the development of nanodrug delivery systems that could be tissue-specific. Hybrid nanoparticles (comprised of two or more components comprised each other enveloped curcumin) developed for a specific cell targeting. These hybrid nanoparticles exhibit potent cytotoxicity in cancerous cells compared with nanoparticles and free curcumin. However, further human considerations are required to evaluate the efficacy and toxicity of hybrid nanoparticles with clinical trials. It is also worth investigating that whether curcumin can be used as a drug alone or in a suitable formulation with an additional drug, which could enhance its potential for the frontiers of chemotherapeutic strategies is yet to be addressed. In this view, curcumin-loaded nanoparticles should be incorporated into any other therapeutic treatment to reduce the amount of the main drug which can give the outcome of improved therapeutic activities with less toxicity. As a result, it can improve the therapeutic efficacy of curcumin-loaded nanoparticles along with less toxicity. Although, researchers should give priority to expanding the industrial production of nano-encapsulated curcumin. For this reason, discovering cost- REFERENCES Abrahams, S., Haylett, W. L., Johnson, G., Carr, J. A., and Bardien, S. (2019). Antioxidant Effects of Curcumin in Models of Neurodegeneration, Ageing, Oxidative and nitrosative Stress: A Review. Neuroscience 406, 1–21. doi: 10.1016/j.neuroscience.2019.02.020 Abruzzo, A., Zuccheri, G., Belluti, F., Provenzano, S., Verardi, L., Bigucci, F., et al. (2016). Chitosan nanoparticles for lipophilic anticancer drug delivery: development, characterization and in vitro studies on HT29 cancer cells. Colloids Surfaces B.: Biointerf. 145, 362–372. doi: 10.1016/j.colsurfb.2016.05.023 Adhikary, R., Carlson, P. J., Kee, T. W., and Petrich, J. W. (2010). Excited-state intramolecular hydrogen atom transfer of curcumin in surfactant micelles. J. Phys. Chem. B. 114, 2997–3004. doi: 10.1021/jp9101527 Adiwidjaja, J., Mclachlan, A. J., and Boddy, A. V. (2017). Curcumin as a clinically- promising anti-cancer agent: pharmacokinetics and drug interactions. Expert Opin. Drug Metab. Toxicol. 13, 953–972. doi: 10.1080/17425255.2017.1360279 Aeineh, N., Salehi, F., Akrami, M., Nemati, F., Alipour, M., Ghorbani, M., et al. (2018). Glutathione conjugated polyethylenimine on the surface of Fe3O4 magnetic nanoparticles as a theranostic agent for targeted and controlled curcumin delivery. J. Biomat. Sci. Polymer. Ed. 29, 1109–1125. doi: 10.1080/ 09205063.2018.1427013 Agarwal, N. B., Jain, S., Agarwal, N. K., Mediratta, P. K., and Sharma, K. K. (2011). Modulation of pentylenetetrazole-induced kindling and oxidative stress by curcumin in mice. Phytomedicine 18, 756–759. doi: 10.1016/j.phymed.2010.11.007 Aggarwal, B. B., and Harikumar, K. B. (2009). Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol. 41, 40–59. doi: 10.1016/j.biocel.2008.06.010 Aggarwal, B. B., and Sung, B. (2009). Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol. Sci. 30, 85–94. doi: 10.1016/j.tips.2008.11.002 Ahmadi, M., Agah, E., Nafissi, S., Jaafari, M. R., Harirchian, M. H., Sarraf, P., et al. (2018). Safety and efficacy of nanocurcumin as add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a pilot randomized clinical trial. Neurotherapeutics 15, 430–438. doi: 10.1007/s13311-018-0606-7 Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., et al. (2013). Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 8, 102. doi: 10.1186/1556-276X-8-102 effective techniques to nanoencapsulate curcumin is an industrial requirement for decreasing manufacture prices and open outstanding competition with synthetic additives and drugs. Finally, the application of nanocurcumin is still in its initial phases. Its progress requires serious and committed efforts through a system of organized and scheduled trials based entirely on the goal of enhancing curcumin’s beneficial effects. AUTHOR CONTRIBUTIONS AK built the layout of the article, collected literature, and wrote the article. TM and NS provided suggestions in manuscript writing. AK and TM edited it. ACKNOWLEDGMENTS This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), Ministry of Education (2019R1A6A1A11052070) and Ministry of Science and ICT (2017R1A2B2007741). Akbik, D., Ghadiri, M., Chrzanowski, W., and Rohanizadeh, R. (2014). Curcumin as a wound healing agent. Life Sci. 116, 1–7. doi: 10.1016/j.lfs.2014.08.016 Akhtar, F., Rizvi, M. M. A., and Kar, S. K. (2012). Oral delivery of curcumin bound to chitosan nanoparticles cured Plasmodium yoelii infected mice. Biotechnol. Adv. 30, 310–320. doi: 10.1016/j.biotechadv.2011.05.009 Alvarino, A., and Yanwirasti, Y. (2018). “Nano Curcumin Effect For Kidney Fibrotic Caused By Unilateral Ureter Obstruction Based On Expression Matrix Metalloproteinase-9,” in Proceedings of the 1st EAI International Conference on Medical And Health Research, ICoMHER. Eds. W. A. Harahap, R. S. Rita, Y. Yulizawati and H. Malini [West Sumatera, Indonesia: European Alliance for Innovation (EAI)]. doi: 10.4108/eai.13-11-2018.2283528 Amanlou, N., Parsa, M., Rostamizadeh, K., Sadighian, S., and Moghaddam, F. (2019). Enhanced cytotoxic activity of curcumin on cancer cell lines by incorporating into gold/chitosan nanogels. Mater. Chem. Phys. 226, 151–157. doi: 10.1016/j.matchemphys.2018.12.089 Anand, P., Sundaram, C., Jhurani, S., Kunnumakkara, A. B., and Aggarwal, B. B. (2008). Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer Lett. 267, 133–164. doi: 10.1016/j.canlet.2008.03.025 Anitha, A., Sreeranganathan, M., Chennazhi, K. P., Lakshmanan, V.-K., and Jayakumar, R. (2014). In vitro combinatorial anticancer effects of 5- fluorouracil and curcumin loaded N, O-carboxymethyl chitosan nanoparticles toward colon cancer and in vivo pharmacokinetic studies. Eur. J. Pharmaceut. Biopharmaceut. 88, 238–251. doi: 10.1016/j.ejpb.2014.04.017 Arunraj, T., Rejinold, N. S., Mangalathillam, S., Saroj, S., Biswas, R., and Jayakumar, R. (2014). Synthesis, characterization and biological activities of curcumin nanospheres. J. Biomed. Nanotechnol. 10, 238–250. doi: 10.1166/jbn.2014.1786 Ayubi, M., Karimi, M., Abdpour, S., Rostamizadeh, K., Parsa, M., Zamani, M., et al. (2019). Magnetic nanoparticles decorated with PEGylated curcumin as dual targeted drug delivery: Synthesis, toxicity and biocompatibility study. Mater. Sci. Engineering: C 104, 109810. doi: 10.1016/j.msec.2019.109810 Baghi, N., Bakhshinejad, B., Keshavarz, R., Babashah, S., and Sadeghizadeh, M. (2018). Dendrosomal nanocurcumin and exogenous p53 can act synergistically to elicit anticancer effects on breast cancer cells. Gene 670, 55–62. doi: 10.1016/ j.gene.2018.05.025 Bajpai, S., Ahuja, S., Chand, N., and Bajpai, M. (2017). Nano cellulose dispersed chitosan film with Ag NPs/Curcumin: An in vivo study on Albino Rats for wound dressing. Int. J. Biol. Macromol. 104, 1012–1019. doi: 10.1016/ j.ijbiomac.2017.06.096 Frontiers in Pharmacology | www.frontiersin.org 17 May 2020 | Volume 11 | Article 487

PDF Image | Nanocurcumin Promising Candidate for Therapeutic Applications

PDF Search Title:

Nanocurcumin Promising Candidate for Therapeutic Applications

Original File Name Searched:

fphar-11-00487.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)