Nanocurcumin Promising Candidate for Therapeutic Applications

PDF Publication Title:

Nanocurcumin Promising Candidate for Therapeutic Applications ( nanocurcumin-promising-candidate-therapeutic-applications )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 023

Karthikeyan et al. Nanocurcumin: A Promising Candidate for Therapeutic Applications least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur. J. Pharmaceut. Sci. 37, 223–230. doi: 10.1016/ j.ejps.2009.02.019 Shakeri, F., and Boskabady, M. H. (2017). Anti-inflammatory, antioxidant, and immunomodulatory effects of curcumin in ovalbumin-sensitized rat. BioFactors 43, 567–576. doi: 10.1002/biof.1364 Sharma, O. (1976). Antioxidant activity of curcumin and related compounds. Biochem. Pharmacol. 25, 1811. doi: 10.1016/0006-2952(76)90421-4 Shehzad, A., Wahid, F., and Lee, Y. S. (2010). Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Archiv Der Pharmazie 343, 489–499. doi: 10.1002/ ardp.200900319 Shen, Y., Tang, H., Van Kirk, E., Murdoch, W., and Radosz, M. (2012). Curcumin- containing polymers and water-soluble curcumin derivatives as prodrugs of prodrug carriers. U.S Patent Number 20120003177A1. Shimatsu, A., Kakeya, H., Imaizumi, A., Morimoto, T., Kanai, M., and Maeda, S. (2012). Clinical application of “curcumin”, a multi-functional substance. Anti- Aging Med. 9, 75–83. Shishodia, S., Sethi, G., and Aggarwal, B. B. (2005). Curcumin: getting back to the roots. Ann. New Y. Acad. Sci. 1056, 206–217. doi: 10.1196/annals.1352.010 Shome, S., Talukdar, A. D., Choudhury, M. D., Bhattacharya, M. K., and Upadhyaya, H. (2016). Curcumin as potential therapeutic natural product: a nanobiotechnological perspective. J. Pharm. Pharmacol. 68, 1481–1500. doi: 10.1111/jphp.12611 Siddique, Y. H., Khan, W., Singh, B. R., and Naqvi, A. H. (2013). Synthesis of alginate-curcumin nanocomposite and its protective role in transgenic Drosophila model of Parkinson’s disease. ISRN Pharmacol. 2013, 794582. doi: 10.1155/2013/794582 Silva, I. D. S., Peron, A. P., Leimann, F. V., Bressan, G. N., Krum, B. N., Fachinetto, R., et al. (2019). In vitro and in vivo evaluation of enzymatic and antioxidant activity, cytotoxicity and genotoxicity of curcumin-loaded solid dispersions. Food Chem. Toxicol. 125, 29–37. doi: 10.1016/j.fct.2018.12.037 Singh, A. T., Ghosh, M., Forte, T. M., Ryan, R. O., and Gordon, L. I. (2011). Curcumin nanodisk-induced apoptosis in mantle cell lymphoma. Leukemia lymphoma 52, 1537–1543. doi: 10.3109/10428194.2011.584253 Singh, D. V., Agarwal, S., Singh, P., Godbole, M. M., and Misra, K. (2013a). Curcumin conjugates induce apoptosis via a mitochondrion dependent pathway in MCF-7 and MDA-MB-231 cell lines. Asian Pacific J. Cancer Prev. 14, 5797–5804. doi: 10.7314/APJCP.2013.14.10.5797 Singh, D. K., Jagannathan, R., Khandelwal, P., Abraham, P. M., and Poddar, P. (2013b). In situ synthesis and surface functionalization of gold nanoparticles with curcumin and their antioxidant properties: an experimental and density functional theory investigation. Nanoscale 5, 1882–1893. doi: 10.1039/ c2nr33776b Singh, P. K., Prabhune, A. A., and Ogale, S. B. (2016). Curcumin-sophorolipid complex. WO Patent Number 2016013026A1. Sinjari, B., Pizzicannella, J., D’aurora, M., Zappacosta, R., Gatta, V., Fontana, A., et al. (2019). Curcumin/Liposome Nanotechnology as Delivery Platform for Anti-inflammatory Activities via NFkB/ERK/pERK Pathway in Human Dental Pulp Treated With 2-HydroxyEthyl MethAcrylate (HEMA). Front. Physiol. 10, 663. doi: 10.3389/fphys.2019.00633 Somparn, P., Phisalaphong, C., Nakornchai, S., Unchern, S., and Morales, N. P. (2007). Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. Biol. Pharmaceut. Bull. 30, 74–78. doi: 10.1248/ bpb.30.74 Son, H. L., Trang, N. T., Sinh, D. T., and Anh, M. N. (2013). Effect of nanocurcumin particles prepared by top-down method on CCl4-induced hepatic fibrosis mice. Int. J. Pharm. Sci. Res. 4, 4542–4548. Srimal, R., and Dhawan, B. (1973). Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J. Pharm. Pharmacol. 25, 447–452. doi: 10.1111/j.2042-7158.1973.tb09131.x Srinivasan, M. (1972). Effect of curcumin on blood sugar as seen in a diabetic subject. Indian J. Med. Sci. 26, 269–270. Sripathy, R., Mandapati, V.N.S.R.R., Gopaal, A., Somashekara, N., Chaniyilparampu, R. N., Gokaraju, R. R., et al. (2015). Novel highly bioavailable, water soluble and sustained release nanoformulations hydrophobic plant derived compounds and extracts. United States patent application. U.S. Patent Number 20150072012 A1. Subramani, P. A., Panati, K., and Narala, V. R. (2017). Curcumin nanotechnologies and its anticancer activity. Nutr. Cancer 69, 381–393. doi: 10.1080/01635581.2017.1285405 Sun, J., Zhao, Y., and Hu, J. (2013). Curcumin inhibits imiquimod-induced psoriasis-like inflammation by inhibiting IL-1beta and IL-6 production in mice. PloS One 8, e67078. doi: 10.1371/journal.pone.0067078 Sun, X., Liu, Y., Li, C., Wang, X., Zhu, R., Liu, C., et al. (2017). Recent advances of curcumin in the prevention and treatment of renal fibrosis. BioMed. Res. Int. 2017, 1–9. doi: 10.1155/2017/2418671 Suresh, S., Sankar, P., Telang, A. G., Kesavan, M., and Sarkar, S. N. (2018). Nanocurcumin ameliorates Staphylococcus aureus-induced mastitis in mouse by suppressing NF-kB signaling and inflammation. Int. Immunopharmacol. 65, 408–412. doi: 10.1016/j.intimp.2018.10.034 Szejtli, J. (1998). Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1754. doi: 10.1021/cr970022c Tan, B., and Norhaizan, M. E.. (2019). Curcumin combination chemotherapy: the implication and efficacy in cancer. Molecules 24, 2527. doi: 10.3390/ molecules24142527 Tayyem, R. F., Heath, D. D., Al-Delaimy, W. K., and Rock, C. L. (2006). Curcumin content of turmeric and curry powders. Nutr. Cancer 55, 126–131. doi: 10.1207/s15327914nc5502_2 Tefas, L. R., Sylvester, B., Tomuta, I., Sesarman, A., Licarete, E., Banciu, M., et al. (2017). Development of antiproliferative long-circulating liposomes co- encapsulating doxorubicin and curcumin, through the use of a quality-by- design approach. Drug Design Dev. Ther. 11, 1605. doi: 10.2147/ DDDT.S129008 Teixeira, C., Mendonça, L., Bergamaschi, M., Queiroz, R. H. C., Souza, G. E. P. D., and Antunes, L. M. G. (2016). Microparticles containing curcumin solid dispersion: stability, bioavailability and anti-inflammatory activity. AAPS PharmSciTech. 17, 252–261. doi: 10.1208/s12249-015-0337-6 Thadakapally, R., Aafreen, A., Aukunuru, J., Habibuddin, M., and Jogala, S. (2016). Preparation and characterization of PEG-albumin-curcumin nanoparticles intended to treat breast cancer. Indian J. Pharmaceut. Sci. 78, 65. doi: 10.4103/0250-474X.180250 Tian, Y. D., Guan, Y. B., and Zhang, Y. Q. (2014). Inhibitory effect of curcumin liposomes on PC-3 human prostate cancer cells. Chin. J. Exp. Surg. 31, 1075– 1078. Tihanyi, K., and Vastag, M. (2011). Solubility, delivery and ADME problems of drugs and drug-candidates (Dubai, UAE: Bentham Science Publishers). Tiwari, S. K., Agarwal, S., Seth, B., Yadav, A., Nair, S., Bhatnagar, P., et al. (2014). Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/b- catenin pathway. ACS Nano 8, 76–103. doi: 10.1021/nn405077y Trujillo, J., Chirino, Y. I., Molina-Jijón, E., Andérica-Romero, A. C., Tapia, E., and Pedraza-Chaverrı,́ J. (2013). Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biol. 1, 448–456. doi: 10.1016/j.redox.2013.09.003 Vallianou, N. G., Evangelopoulos, A., Schizas, N., and Kazazis, C. (2015). Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res. 35, 645–651. Verderio, P., Pandolfi, L., Mazzucchelli, S., Marinozzi, M. R., Vanna, R., Gramatica, F., et al. (2014). Antiproliferative effect of ASC-J9 delivered by PLGA nanoparticles against estrogen-dependent breast cancer cells. Mol. Pharmaceut. 11, 2864–2875. doi: 10.1021/mp500222k Vetha, B. S. S., Kim, E.-M., Oh, P.-S., Kim, S. H., Lim, S. T., Sohn, M.-H., et al. (2019). Curcumin Encapsulated Micellar Nanoplatform for Blue Light Emitting Diode Induced Apoptosis as a New Class of Cancer Therapy. Macromol. Res. 27, 1179–1184. doi: 10.1007/s13233-019-7168-3 Wang, Y., Lu, Z., Wu, H., and Lv, F. (2009). Study on the antibiotic activity of microcapsule curcumin against foodborne pathogens. Int. J. Food Microbiol. 136, 71–74. doi: 10.1016/j.ijfoodmicro.2009.09.001 Wang, W., Zhu, R., Xie, Q., Li, A., Xiao, Y., Li, K., et al. (2012). Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles. Int. J. Nanomed. 7, 3667. doi: 10.2147/ IJN.S30428 Wang, S., Ha, Y., Huang, X., Chin, B., Sim, W., and Chen, R. (2018). A New Strategy for Intestinal Drug Delivery via pH-Responsive and Membrane-Active Nanogels. ACS Appl. Mater. Interf. 10, 36622–36627. doi: 10.1021/ acsami.8b15661 Frontiers in Pharmacology | www.frontiersin.org 23 May 2020 | Volume 11 | Article 487

PDF Image | Nanocurcumin Promising Candidate for Therapeutic Applications

PDF Search Title:

Nanocurcumin Promising Candidate for Therapeutic Applications

Original File Name Searched:

fphar-11-00487.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)