logo

Nanocurcumin Promising Candidate for Therapeutic Applications

PDF Publication Title:

Nanocurcumin Promising Candidate for Therapeutic Applications ( nanocurcumin-promising-candidate-therapeutic-applications )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 024

Karthikeyan et al. Nanocurcumin: A Promising Candidate for Therapeutic Applications Wang, W., Chen, T., Xu, H., Ren, B., Cheng, X., Qi, R., et al. (2018). Curcumin- loaded solid lipid nanoparticles enhanced anticancer efficiency in breast cancer. Molecules 23, 1578. doi: 10.3390/molecules23071578 Wang, Z., Zhang, R. X., Zhang, C., Dai, C., Ju, X., and He, R. (2019). Fabrication of stable and self-assembling rapeseed protein nanogel for hydrophobic curcumin delivery. J. Agric. Food Chem. 67, 887–894. doi: 10.1021/acs.jafc.8b05572 Wei, X., Senanayake, T. H., Warren, G., and Vinogradov, S. V. (2013). Hyaluronic acid-based nanogel–drug conjugates with enhanced anticancer activity designed for the targeting of CD44-positive and drug-resistant tumors. Bioconjugate Chem. 24, 658–668. doi: 10.1021/bc300632w Wilken, R., Veena, M. S., Wang, M. B., and Srivatsan, E. S. (2011). Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamouscell carcinoma. Mol. Cancer 10, 1–19. doi: 10.1186/1476-4598-10-12 Willenbacher, E., Khan, S. Z., Mujica, S. C. A., Trapani, D., Hussain, S., Wolf, D., et al. (2019). Curcumin: New Insights into an Ancient Ingredient against Cancer. Int. J. Mol. Sci. 20, 1808. doi: 10.3390/ijms20081808 Wojcik, M., Krawczyk, M., and Wozniak, L. A. (2018). “Antidiabetic Activity of Curcumin: Insight Into Its Mechanisms of Action,” in Nutritional and Therapeutic Interventions for Diabetes and Metabolic Syndrome, 2nd. Eds. D. Bagchi and S. Nair (Amsterdam, Netherlands: Elsevier), 385–401. Wong, K. E., Ngai, S. C., Chan, K.-G., Lee, L.-H., Goh, B.-H., and Chuah, L.-H. (2019). Curcumin nanoformulations for colorectal cancer: a review. Front. Pharmacol. 10, 152. doi: 10.3389/fphar.2019.00152 Xianwang, W., Hufuqiang, K., and Jian, H. (2012). Preparation method and application of curcumin chitosan-stearic acid graft micelle. Chinese Patent No 102743336A. Xie, M., Fan, D., Li, Y., He, X., Chen, X., Chen, Y., et al. (2017). Supercritical carbon dioxide-developed silk fibroin nanoplatform for smart colon cancer therapy. Int. J. Nanomed. 12, 7751. doi: 10.2147/IJN.S145012 Yadav, D., and Kumar, N. (2014). Nanonization of curcumin by antisolvent precipitation: process development, characterization, freeze drying and stability performance. Int. J. Pharmaceut. 477, 564–577. doi: 10.1016/ j.ijpharm.2014.10.070 Yadav, V. R., Suresh, S., Devi, K., and Yadav, S. (2009). Novel formulation of solid lipid microparticles of curcumin for anti-angiogenic and anti-inflammatory activity for optimization of therapy of inflammatory bowel disease. J. Pharm. Pharmacol. 61, 311–321. doi: 10.1211/jpp.61.03.0005 Yadav, A., Lomash, V., Samim, M., and Flora, S. J. (2012). Curcumin encapsulated in chitosan nanoparticles: a novel strategy for the treatment of arsenic toxicity. Chemico-biol. Interact. 199, 49–61. doi: 10.1016/j.cbi.2012.05.011 Yallapu, M. M., Jaggi, M., and Chauhan, S. C. (2010). b-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surfaces B.: Biointerf. 79, 113–125. doi: 10.1016/j.colsurfb.2010.03.039 Yallapu, M. M., Jaggi, M., and Chauhan, S. C. (2012a). Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discovery Today 17, 71–80. doi: 10.1016/j.drudis.2011.09.009 Yallapu, M. M., Othman, S. F., Curtis, E. T., Bauer, N. A., Chauhan, N., and Kumar, D. (2012b). Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications. Int. J. Nanomed. 7, 1761–1779. doi: 10.2147/IJN.S29290 Yallapu, M. M., Nagesh, P. K. B., Jaggi, M., and Chauhan, S. C. (2015). Therapeutic applications of curcumin nanoformulations. AAPS J. 17, 1341–1356. doi: 10.1208/s12248-015-9811-z Yang, X., Li, Z., Wang, N., Li, L., Song, L., He, T., et al. (2015). Curcumin- encapsulated polymeric micelles suppress the development of colon cancer in vitro and in vivo. Sci. Rep. 5, 10322. doi: 10.1038/srep10322 Yang, X. X., Li, C. M., and Huang, C. Z. (2016). Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection. Nanoscale 8, 3040–3048. doi: 10.1039/C5NR07918G Yen, F.-L., Wu, T.-H., Tzeng, C.-W., Lin, L.-T., and Lin, C.-C. (2010). Curcumin nanoparticles improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antihepatoma activities. J. Agric. Food Chem. 58, 7376–7382. doi: 10.1021/jf100135h Yuan, J., Liu, R., Ma, Y., Zhang, Z., and Xie, Z. (2018). Curcumin attenuates airway inflammation and airway remolding by inhibiting NF-kB signaling and COX-2 in cigarette smoke-induced COPD mice. Inflammation 41, 1804–1814. doi: 10.1007/s10753-018-0823-6 Zaharieva, M. M., Kroumov, A. D., Dimitrova, L., Tsvetkova, I., Trochopoulos, A., Konstantinov, S. M., et al. (2019). Micellar curcumin improves the antibacterial activity of the alkylphosphocholines erufosine and miltefosine against pathogenic Staphyloccocus aureus strains. Biotechnol. Biotechnol. Equip. 33, 38–53. doi: 10.1080/13102818.2018.1533792 Zhang, F., Altorki, N. K., Mestre, J. R., Subbaramaiah, K., and Dannenberg, A. J. (1999). Curcumin inhibits cyclooxygenase-2 transcription in bile acid- and phorbol estertreated human gastrointestinal epithelial cells. Carcinogenesis 20, 445–451. doi: 10.1093/carcin/20.3.445 Zhang, L., Man, S., Qiu, H., Liu, Z., Zhang, M., Ma, L., et al. (2016). Curcumin- cyclodextrin complexes enhanced the anti-cancer effects of curcumin. Environ. Toxicol. Pharmacol. 48, 31–38. doi: 10.1016/j.etap.2016.09.021 Zhang, M., Zhuang, B., Du, G., Han, G., and Jin, Y. (2019). Curcumin solid dispersion-loaded in situ hydrogels for local treatment of injured vaginal bacterial infection and improvement of vaginal wound healing. J. Pharm. Pharmacol. 71, 1044–1054. doi: 10.1111/jphp.13088 Zhou, H., Beevers, C. S., and Huang, S. (2011). The targets of curcumin. Curr. Drug Targets 12, 332–347. doi: 10.2174/138945011794815356 Zou, P., Zhang, J., Xia, Y., Kanchana, K., Guo, G., Chen, W., et al. (2015). ROS generation mediates the anti-cancer effects of WZ35 via activating JNK and ER stress apoptotic pathways in gastric cancer. Oncotarget 6, 5860. doi: 10.18632/ oncotarget.3333 Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as potential conflict of interest. Copyright © 2020 Karthikeyan, Senthil and Min. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Frontiers in Pharmacology | www.frontiersin.org 24 May 2020 | Volume 11 | Article 487

PDF Image | Nanocurcumin Promising Candidate for Therapeutic Applications

nanocurcumin-promising-candidate-therapeutic-applications-024

PDF Search Title:

Nanocurcumin Promising Candidate for Therapeutic Applications

Original File Name Searched:

fphar-11-00487.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP