Nanomaterials beyond Graphene for Biomedical Applications

PDF Publication Title:

Nanomaterials beyond Graphene for Biomedical Applications ( nanomaterials-beyond-graphene-biomedical-applications )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 034

J. Funct. Biomater. 2022, 13, 27 34 of 36 90. Sharifuzzaman, M.; Zahed, M.A.; Sharma, S.; Rana, S.S.; Chhetry, A.; Shin, Y.D.; Asaduzzaman, M.; Zhang, S.; Yoon, S.; Hui, X.; et al. β-phase‐rich laser‐induced hierarchically interactive mxene reinforced carbon nanofibers for multifunctional breathable bioelectronics. Adv. Funct. Mater. 2021, 32, 2107969. 91. Driscoll, N.; Richardson, A.G.; Maleski, K.; Anasori, B.; Adewole, O.; Lelyukh, P.; Escobedo, L.; Cullen, D.K.; Lucas, T.H.; Gogotsi, Y.; et al. Two-dimensional Ti3C2 MXene for high-resolution neural interfaces. Acs Nano 2018, 12, 10419–10429. 92. Driscoll, N.; Erickson, B.; Murphy, B.B.; Richardson, A.G.; Robbins, G.; Apollo, N.V.; Mentzelopoulos, G.; Mathis, T.; Hantanasirisakul, K.; Bagga, P.; et al. MXene-infused bioelectronic interfaces for multiscale electrophysiology and stimulation. Sci. Transl. Med. 2021, 13, eabf8629. 93. Murphy, B.B.; Mulcahey, P.J.; Driscoll, N.; Richardson, A.G.; Robbins, G.T.; Apollo, N.V.; Maleski, K.; Lucas, T.H.; Gogotsi, Y.; Dillingham, T.; et al. A gel‐free Ti3C2Tx-based electrode array for high‐density, high‐resolution surface electromyography. Adv. Mater. Technol. 2020, 5, 2000325. 94. Della Rocca, J.; Liu, D.; Lin, W. Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 2011, 44, 957–968. 95. Yang, J.; Yang, Y.W. Metal–organic frameworks for biomedical applications. Small 2020, 16, 1906846. 96. Chowdhury, M.A. Metal-organic‐frameworks as contrast agents in magnetic resonance imaging. ChemBioEng Rev. 2017, 4, 225– 239. 97. Rieter, W.J.; Taylor, K.M.; An, H.; Lin, W.; Lin, W. Nanoscale metal−organic frameworks as potential multimodal contrast enhancing agents. J. Am. Chem. Soc. 2006, 128, 9024–9025. 98. Brenner, D.J.; Hall, E.J. Computed tomography—An increasing source of radiation exposure. N. Engl. J. Med. 2007, 357, 2277– 2284. 99. Shang, W.; Zeng, C.; Du, Y.; Hui, H.; Liang, X.; Chi, C.; Wang, K.; Wang, Z.; Tian, J. Core–shell gold Nanorod@ metal–organic framework nanoprobes for multimodality diagnosis of glioma. Adv. Mater. 2017, 29, 1604381. 100. Liu, D.; Huxford, R.C.; Lin, W. Phosphorescent nanoscale coordination polymers as contrast agents for optical imaging. Angew. Chem. Int. Ed. 2011, 50, 3696–3700. 101. Li, Z.; Wong, S.L. Functionalization of 2D transition metal dichalcogenides for biomedical applications. Mater. Sci. Eng. C 2017, 70, 1095–1106. 102. Dutta, R.R.; Devi, R.; Dutta, H.S.; Gogoi, S. Transition metal dichalcogenides for biomedical applications. In Two-Dimensional Nanostructures for Biomedical Technology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 211–247. 103. Chen,J.;Liu,C.;Hu,D.;Wang,F.;Wu,H.;Gong,X.;Liu,X.;Song,L.;Sheng,Z.;Zheng,H.Single-LayerMoS2Nanosheetswith amplified photoacoustic effect for highly sensitive photoacoustic imaging of orthotopic brain tumors. Adv. Funct. Mater. 2016, 26, 8715–8725. 104. Zhou,X.;Sun,H.;Bai,X.Two-dimensionaltransitionmetaldichalcogenides:Synthesis,biomedicalapplicationsandbiosafety evaluation. Front. Bioeng. Biotechnol. 2020, 8, 236. 105. Yin,W.;Yan,L.;Yu,J.;Tian,G.;Zhou,L.;Zheng,X.;Zhang,X.;Yong,Y.;Li,J.;Gu,Z.High-throughputsynthesisofsingle-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 2014, 8, 6922– 6933. 106. Xie,H.;Shao,J.;Wang,J.;Sun,Z.;Yu,X.-F.;Wang,Q.-Q.Near-infraredopticalperformancesoftwoBi2Se3nanosheets.RSCAdv. 2017, 7, 50234–50238. 107. Li,B.L.;Li,R.;Zou,H.L.;Ariga,K.;Li,N.B.;Leong,D.T.Engineeredfunctionalized2Dnanoarchitecturesforstimuli-responsive drug delivery. Mater. Horiz. 2020, 7, 455–469. 108. Kurapati, R.; Kostarelos, K.; Prato, M.; Bianco, A. Biomedical uses for 2D materials beyond graphene: Current advances and challenges ahead. Adv. Mater. 2016, 28, 6052–6074. 109. Dai, C.; Zhang, S.; Liu, Z.; Wu, R.; Chen, Y. Two-dimensional graphene augments nanosonosensitized sonocatalytic tumor eradication. ACS Nano 2017, 11, 9467–9480. 110. Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.-T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318–3323. 111. Han, X.; Huang, J.; Lin, H.; Wang, Z.; Li, P.; Chen, Y. 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv. Healthc. Mater. 2018, 7, 1701394. 112. Peng, L.; Mei, X.; He, J.; Xu, J.; Zhang, W.; Liang, R.; Wei, M.; Evans, D.G.; Duan, X. Monolayer nanosheets with an extremely high drug loading toward controlled delivery and cancer theranostics. Adv. Mater. 2018, 30, 1707389. https://doi.org/10.1002/adma.201707389. 113. Zhao, H.; Ding, R.; Zhao, X.; Li, Y.; Qu, L.; Pei, H.; Yildirimer, L.; Wu, Z.; Zhang, W. Graphene-based nanomaterials for drug and/or gene delivery, bioimaging, and tissue engineering. Drug Discov. Today 2017, 22, 1302–1317. 114. Kostarelos, K.; Novoselov, K.S. Graphene devices for life. Nat. Nanotechnol. 2014, 9, 744–745. 115. Guo, W.; Qiu, J.; Liu, J.; Liu, H. Graphene microfiber as a scaffold for regulation of neural stem cells differentiation. Sci. Rep. 2017, 7, 1–8. 116. Liao, J.; Qu, Y.; Chu, B.; Zhang, X.; Qian, Z. Biodegradable CSMA/PECA/graphene porous hybrid scaffold for cartilage tissue engineering. Sci. Rep. 2015, 5, 1–16. 117. Zhou, Q.; Yang, P.; Li, X.; Liu, H.; Ge, S. Bioactivity of periodontal ligament stem cells on sodium titanate coated with graphene oxide. Sci. Rep. 2016, 6, 1–10.

PDF Image | Nanomaterials beyond Graphene for Biomedical Applications

PDF Search Title:

Nanomaterials beyond Graphene for Biomedical Applications

Original File Name Searched:

jfb-13-00027.pdf

DIY PDF Search: Google It | Yahoo | Bing

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

Heat Pumps CO2 ORC Heat Pump System Platform More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)