Fundamentals of Electric Propulsion: Ion and Hall Thrusters

PDF Publication Title:

Fundamentals of Electric Propulsion: Ion and Hall Thrusters ( fundamentals-electric-propulsion-ion-and-hall-thrusters )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 039

Thruster Principles 27 Using our previous example of a 10-deg half-angle beam divergence and a 10% doubles-to-singles ratio with a 90% propellant utilization of xenon [in Eq. (2.4-5)] at 1500 V, the Isp is 123.6*0.958*0.9* 1500 = 4127 s. Specific impulse is functionally equivalent to gas mileage in a car. Cars with high gas mileage typically don’t provide much acceleration, just as thrusters with high Isp don’t provide as much thrust for a given input electrical power. Of critical importance is the ratio of the thrust achieved to total power used, which depends on the electrical efficiency of the thruster (to be described in the next section). 2.5 Thruster Efficiency The mass utilization efficiency, defined in Eq. (2.4-6), describes the fraction of the input propellant mass that is converted into ions and accelerated in the electric thruster. The electrical efficiency of the thruster is defined as the beam power, Pb , out of the thruster divided by the total input power, PT : e = Pb = IbVb , (2.5-1) PT IbVb +Po where Po represents the other power input to the thruster required to create the thrust beam. Other power will include the electrical cost of producing the ions, cathode heater or keeper power, grid currents in ion thrusters, etc. The cost of producing ions is described by an ion production efficiency term, sometimes called the discharge loss: d = Power to produce the ions = Pd , (2.5-2) Current of ions produced Ib where d has units of watts per ampere (W/A) or equivalently electron-volts per ion (eV/ion). Contrary to most efficiency terms, it is desirable to have d as small as possible since this represents a power loss. For example, if an ion thruster requires a 20-A, 25-V discharge to produce 2 A of ions in the beam, the discharge loss is then 20*25/2 = 250 eV/ion. The performance of a plasma generator is usually characterized by plotting the discharge loss versus the propellant utilization efficiency. An example of this is shown in Fig. 2-3. At low propellant efficiencies, the neutral pressure in the thruster is high and the performance curves are relatively flat. As the propellant efficiency is increased, the neutral pressure in the thruster decreases, the

PDF Image | Fundamentals of Electric Propulsion: Ion and Hall Thrusters

PDF Search Title:

Fundamentals of Electric Propulsion: Ion and Hall Thrusters

Original File Name Searched:

Goebel__cmprsd_opt.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)