GAS TURBINES IN SIMPLE CYCLE COMBINED CYCLE APPLICATIONS

PDF Publication Title:

GAS TURBINES IN SIMPLE CYCLE COMBINED CYCLE APPLICATIONS ( gas-turbines-in-simple-cycle-combined-cycle-applications )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 012

12 their own in the Second World War In peacetime; NASA took over the research that led to better alloys, components, and design techniques. This technology was then handed down to military aviation, and eventually commercial aviation. However, since the same manufacturers also make gas turbines for land and marine use, aeroderivative gas turbines were a natural offshoot of their flying forerunners. However, the same manufacturers also make gas turbines for land and marine use. So aeroderivative gas turbines were a natural offshoot of their flying forerunners. Aeroderivative gas turbines are essentially aviation gas turbines that are installed on a light frame and installed on a flat surface (ground based, marine craft or offshore platform). Aeroderivatives are commonly used in power generation service, particularly where a relatively light package is required, such as in offshore service. The Rolls Royce Spey and Olympus engines for instance, are both aero engines but are also popular when packaged as aeroderivatives in land based and offshore platform service. Pratt and Whitney’s (PW) JT- 8D was once the largest (in terms of fleet size) aircraft engine family in existence. The engine first made its appearance in the 1950s and delivered about 10,000 pounds of thrust, then. Several variations on the basic core produced a version that delivered roughly 20,000 pounds of thrust about twenty years later. This incremental power development around the same basic design is common and saves on development costs, spares stocking costs and maintenance. PW’s FT- 8D is their aeroderivative equivalent used in both power generation and mechanical drive application. Similarly General Electric’s (GE’s) LM2500 and LM6000 family (aero derivative) are essentially CF6-80C2 (aero) engines that have been adapted for land based use. What was ABB’s GT35 (land based), then Alstom’s GT35 (change of corporate ownership), then Siemens Westinghouse’s SGT500 (yet another corporate purchase) is another example of an aeroderivative. Most aeroderivatives can also be used in marine (ferry, ship) applications. Some of them are also used on mobile land applications, such as in military tanks. Aero and aeroderivative gas turbine engines are likely to be built in modular construction. This means that one module of the gas turbine engine may be removed from service and the other modules left in place. A substitute module may be inserted in place of the removed module so the gas turbine can resume service. An industrial engine is more likely to be constructed in a non-modular format. If part of an industrial engine has serious problems, it is likely that the entire engine will be “down for maintenance”. The term “industrial” gas turbine implies a heavier frame and a gas turbine model that was not intended for service where the mass (weight) to power ratio (in other words weight minimization for the power plant) was of paramount concern. That said, the metallurgical selections for contemporary industrials reflect the best developments in metallurgical selections. The gas turbine field is a highly competitive one, and the highest turbine inlet temperatures (TITs) that can be tolerated by the metallurgical and fuel selections, are sought as this optimizes the gas turbine’s peak power rating. In other words, GE’s industrial Frame 7s and 9s (be they “- F”, “- G” or “- H” technology) may incorporate similar metallurgy to that used on their aircraft engines. The letters F, G and H refer to temperature ceilings and therefore imply higher power (with “later” alphabet letters). Some turbine model designations can appear confusing due to several changes in corporate ownership. This is partly due to the fact that the OEM (original equipment manufacturer) gas turbine scene changes constantly with corporate mergers, partial mergers, buyouts of specific divisions and joint ventures. This section and the one on combined cycles therefore have several notes about specific engines’ model designation history and previous ownership. This has considerable relevance when it comes to noting the finer points of any gas turbine’s design. This is critical to operators as they can then make better decisions regarding the overhaul, performance optimization, component updates and retrofit systems on their turbine systems. Any application of a gas turbine could have a great deal to offer end-users in other industrial sectors. Power generation is often the least demanding application for a given gas turbine, unless it used in variable load/ peaking service. Mechanical drive units are more likely to experience load swings. One example would be turbines driving pumps that injects (into the soil) varying volumes of sea water that accompany “mixed field” (oil, gas and seawater deposits) oil and gas production. Aircraft engine turbines may see varying stresses depending on their service. If for instance, one considers an aerobatic squadron, one needs to be aware that the engines on the planes trying to stay a fixed distance from the wing tip of the formation’s leader may accumulate life cycle losses of twenty times that of the formation leader’s engines. In other words, the variations in all parameters that pertain to a gas turbine’s overall life, component lives or time between overhauls (TBOs) offer insight to gas turbine operators regardless of whether that turbine operates in “their” industry or not. Lessons which are

PDF Image | GAS TURBINES IN SIMPLE CYCLE COMBINED CYCLE APPLICATIONS

PDF Search Title:

GAS TURBINES IN SIMPLE CYCLE COMBINED CYCLE APPLICATIONS

Original File Name Searched:

gas-turbine-combined-cycle.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)