Triboelectricity: Macroscopic Charge Patterns Formed by Self- Arraying Ions on Polymer Surfaces

PDF Publication Title:

Triboelectricity: Macroscopic Charge Patterns Formed by Self- Arraying Ions on Polymer Surfaces ( triboelectricity-macroscopic-charge-patterns-formed-by-self- )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 009

Langmuir Article (9) Gibson, H. W.; Bailey, F. C.; Mincer, J. L.; Gunther, W. H. H. Chemical modification of polymers. 12. Control of triboelectric charging properties of polymers by chemical modification. J. Polym. Sci., Polym. Chem. Ed. 1979, 17, 2961−2974. (10) Friedle, S.; Thomas, S. W., III. Controlling contact electrification with photochromic polymers. Angew. Chem., Int. Ed. 2010, 49, 7968− 7971. (11) Liu, C. Y.; Bard, A. J. Electrostatic electrochemistry at insulators. Nat. Mater. 2008, 7, 505−509. (12) Liu, C. Y.; Bard, A. J. Chemical redox reactions induced by cryptoelectrons on a PMMA surface. J. Am. Chem. Soc. 2009, 131, 6397−6401. (13) Grzybowski, B. A.; Fialkowski, M.; Wiles, J. A. Kinetics of contact electrification between metals and polymers. J. Phys. Chem. B 2005, 109, 20511−20515. (14) Lowell, J.; Rose-Innes, A. C. Contact electrification. Adv. Phys. 1980, 29, 947−1023. (15) Gibson, H. W. Linear free energy relationships. 5. Triboelectric charging of organic solids. J. Am. Chem. Soc. 1975, 97, 3832−3833. (16) Gibson, H. W.; Bailey, F. C. Linear free-energy relationships - Triboelectric charging of poly(olefins). Chem. Phys. Lett. 1977, 51, 352−355. (17) Gibson, H. W. in Modification of Polymers, Carraher, C. E., , Jr., Moore, J. A., Eds.; Plenum Publishing Corporation: New York, 1983; pp 353−372. (18) Diaz, A. F.; Wollmann, D.; Dreblow, D. Contact Electrification: Ion transfer to metals and polymers. Chem. Mater. 1991, 3, 997−999. (19) McCarty, L. S.; Winkleman, A.; Whitesides, G. M. Ionic electrets: Electrostatic charging of surfaces by transferring mobile ions upon contact. J. Am. Chem. Soc. 2007, 129, 4075−4088. (20) Diaz, A. F.; Guay, J. Contact charging of organic materials − Ion vs electron-transfer. IBM J. Res. Dev. 1993, 37, 249−259. (21) Davies, D. K. Charge generation of dielectric surfaces. J. Phys. D: Appl. Phys. 1969, 2, 1533−1537. (22) Duke, C. B.; Fabish, T. J. Contact electrification of polymers: A quantitative model. J. Appl. Phys. 1978, 49, 315−321. (23) Jacobs, H. O.; Knapp, H. F.; Stemmer, A. Surface potential mapping: A qualitative material contrast in SPM. Ultramicroscopy 1997, 69, 39−49. (24) Gouveia, R. F.; Galembeck, F. Electrostatic charging of hydrophilic particles due to water adsorption. J. Am. Chem. Soc. 2009, 131, 11381−11386. (25) Gouveia, R. F.; Costa, C. A. R.; Galembeck, F. Water vapor adsorption effect on siĺica surface electrostatic patterning. J. Phys. Chem. C 2008, 112, 17193−17199. (26) Gouveia, R. F.; Costa, C. A. R.; Galembeck, F. Electrostatic patterning of a siĺica surface: A new model for charge build-up on a dielectric solid. J. Phys. Chem. B 2005, 109, 4631−4637. (27) Diaz, A. F.; Felix-Navarro, R. M. A semi-quantitative tribo- electric series for polymeric materials: the influence of chemical structure and properties. J. Electrostat. 2004, 62, 277−290. (28) Baytekin, H. T.; Patashinski, A. Z.; Branicki, M.; Baytekin, B.; Soh, S.; Grzybowski, B. A. The mosaic of surface charge in contact electrification. Science 2011, 333, 308−312. (29) Terris, B. D.; Stern, J. E.; Rugar, D.; Mamin, H. J. Contact electrification using force microscopy. Phys. Rev. Lett. 1989, 63, 2669− 2672. (30) Knorr, N. Squeezing out hydrated protons: low-frictional-energy triboelectric insulator charging on a microscopic scale. AIP Advances 2011, 1, 022119. (31) Grzybowski, B. A.; Winkleman, A.; Wiles, J. A.; Brumer, Y.; Whitesides, G. M. Electrostatic self-assembly of macroscopic crystals using contact electrification. Nat. Mater. 2003, 2, 241−245. (32) Galembeck, A.; Costa, C. A. R.; Silva, M. C. V. M; Souza, E. F.; Galembeck, F. Scanning electric potential microscopy imaging of polymers: electrical charge distribution in dielectrics. Polymer 2001, 42, 4845−4851. (33) Braga, M.; Costa, C. A. R.; Leite, C. A. P.; Galembeck, F. Scanning electric potential microscopy imaging of polymer latex films: Detection of supramolecular domains with nonuniform electrical characteristics. J. Phys. Chem. B 2001, 105, 3005−3011. (34) Soares, L. C.; Bertazzo, S.; Burgo, T. A. L.; Baldim, V.; Galembeck, F. A new mechanism for the electrostatic charge build-up and dissipation in dielectrics. J. Braz. Chem. Soc. 2008, 19, 277−286. (35) Bernardes, J. S.; Rezende, C. A.; Galembeck, F. Electrostatic patterns on surfactant coatings change with ambient humidity. J. Phys. Chem. C 2010, 114, 19016−19023. (36) Ducati, T. R. D.; Simões, L. H.; Galembeck, F. Charge partitioning at gas − solid interfaces: Humidity causes electricity buildup on metals. Langmuir 2010, 26, 13763−13766. (37) Healy, T. W; Fuerstenau, D. W. The isoelectric point/point-of zero-charge of interfaces formed by aqueous solutions and nonpolar solids, liquids, and gases. J. Colloid Interface Sci. 2007, 309, 183−188. (38) Creux, P.; Lachaise, J.; Graciaa, A.; Beattie, J. K.; Djerdjev, A. M. Strong specific hydroxide ion binding at the pristine oil/water and air/ water interfaces. J. Phys. Chem. B 2009, 113, 14146−14150. (39) Burgo, T. A. L.; Rezende, C. A.; Bertazzo, S.; Galembeck, A.; Galembeck, F. Electric potential decay on polyethylene: Role of atmospheric water on electric charge build-up and dissipation. J. Electrostat. 2011, 69, 401−409. (40) Santos, L. P.; Ducati, T. R. D.; Balestrin, L. B. S.; Galembeck, F. Water with excess electric charge. J. Phys. Chem. C 2011, 115, 11226− 11232. (41) Gaussian 09, revision A.02; Frisch, M. J. et al. Gaussian, Inc., Wallingford, CT, 2009. (42) DeGennes, P. G. Scaling Concepts in Polymer Physics; Cornell University Press: Ithaca, 1979; pp 219−240. (43) DeGennes, P. G. Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 1971, 55, 572−579. (44) Elias, H. G. Macromolecules; Plenum Press: New York, 1984; pp 213−216. (45) Gong, D.; Xue, Q.; Wang, H. ESCA study on tribochemical characteristics of filled PTFE. Wear 1991, 148, 161−169. (46) Lu, X.; Wong, K. C.; Wong, P. C.; Mitchell, K. A. R.; Cotter, J.; Eadie, D. T. Surface characterization of polytetrafluoroethylene (PTFE) transfer films during rolling-sliding tribology tests using X- ray photoelectron spectroscopy. Wear 2006, 261, 1155−1162. (47) Gibson, H. W.; Pochan, J. M.; Bailey, F. C. Surface analyses by a triboelectric charging technique. Anal. Chem. 1979, 51, 483−487. (48) Mittal, K. L. Adhesion aspects of metallization of organic polymer surfaces. J. Vac. Sci. Technol. 1976, 13, 19−25. (49) Good, R. J. Theory of cohesive vs adhesive separation in an adhering system. J. Adhes. 1972, 4, 133−154. (50) Leclercq, B.; Sotton, M.; Baszkin, A.; Ter-Minassian-Saraga, L. Surface modification of corona treated poly(ethylene terephthalate) film: adsorption and wettability studies. Polymer 1977, 18, 675−680. (51) Adam, N. K. The Physics and Chemistry of Surfaces, 3rd ed.; Oxford University Press: London, 1941. (52) Heinicke, G. Tribochemistry; Carl Hanser: Berlin, 1984. (53) Dascalescu, D.; Polychronopoulou, K.; Polycarpou, A. A. The significance of tribochemistry on the performance of PTFE-based coatings in CO2 refrigerant environment. Surf. Coat. Technol. 2009, 204, 319−329. (54) Kajdas, C. K. Importance of the triboemission process for tribochemical reaction. Tribol. Int. 2005, 38, 337−353. (55) Caruso, M. M.; Davis, D. A.; Shen, Q.; Odom, S. A.; Sottos, N. R.; White, S. R.; Moore, J. S. Mechanically-induced chemical changes in polymeric materials. Chem. Rev. 2009, 109, 5755−5798. (56) Allayarov, S. R.; Konovalova, T. A.; Waterfield, A.; Focsan, A. L.; Jackson, V.; Craciun, R.; Kispert, L. D.; Thrasher, J. S.; Dixon, D. A. Low-temperature fluorination of fluoro-containing polymers EPR studies of polyvinylidenefluoride and the copolymer of tetrafluoro- ethylene with ethylene. J. Fluorine Chem. 2006, 127, 1294−1301. (57) Oshima, A.; Seguchi, T.; Tabata, Y. ESR study on free radicals trapped in crosslinked polytetrafluoroethylene (PTFE) − II radical formation and reactivity. Radiat. Phys. Chem. 1999, 55, 61−71. (58) Huheey, J. E. The electronegativity of groups. J. Phys. Chem. 1965, 69, 3284−3291. 7415 dx.doi.org/10.1021/la301228j | Langmuir 2012, 28, 7407−7416

PDF Image | Triboelectricity: Macroscopic Charge Patterns Formed by Self- Arraying Ions on Polymer Surfaces

PDF Search Title:

Triboelectricity: Macroscopic Charge Patterns Formed by Self- Arraying Ions on Polymer Surfaces

Original File Name Searched:

la301228j.pdf

DIY PDF Search: Google It | Yahoo | Bing

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

IT XR Project Redstone NFT Available for Sale: NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Be part of the future with this NFT. Can be bought and sold but only one design NFT exists. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Turbine IT XR Project Redstone Design: NFT for sale... NFT for high tech turbine design with one part 3D printed counter-rotating energy turbine. Includes all rights to this turbine design, including license for Fluid Handling Block I and II for the turbine assembly and housing. The NFT includes the blueprints (cad/cam), revenue streams, and all future development of the IT XR Project Redstone... More Info

Infinity Turbine ROT Radial Outflow Turbine 24 Design and Worldwide Rights: NFT for sale... NFT for the ROT 24 energy turbine. Be part of the future with this NFT. This design can be bought and sold but only one design NFT exists. You may manufacture the unit, or get the revenues from its sale from Infinity Turbine. Royalties go to the developer (Infinity) to keep enhancing design and applications... More Info

Infinity Supercritical CO2 10 Liter Extractor Design and Worldwide Rights: The Infinity Supercritical 10L CO2 extractor is for botanical oil extraction, which is rich in terpenes and can produce shelf ready full spectrum oil. With over 5 years of development, this industry leader mature extractor machine has been sold since 2015 and is part of many profitable businesses. The process can also be used for electrowinning, e-waste recycling, and lithium battery recycling, gold mining electronic wastes, precious metals. CO2 can also be used in a reverse fuel cell with nafion to make a gas-to-liquids fuel, such as methanol, ethanol and butanol or ethylene. Supercritical CO2 has also been used for treating nafion to make it more effective catalyst. This NFT is for the purchase of worldwide rights which includes the design. More Info

NFT (Non Fungible Token): Buy our tech, design, development or system NFT and become part of our tech NFT network... More Info

Infinity Turbine Products: Special for this month, any plans are $10,000 for complete Cad/Cam blueprints. License is for one build. Try before you buy a production license. May pay by Bitcoin or other Crypto. Products Page... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)