carbon nanofibers obtained from coaxial electrospinning

PDF Publication Title:

carbon nanofibers obtained from coaxial electrospinning ( carbon-nanofibers-obtained-from-coaxial-electrospinning )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 009

Kaerkitcha et al. Nanoscale Research Letters (2016) 11:186 Page 9 of 9 Received: 4 February 2016 Accepted: 4 April 2016 References 1. Kwon W, Kim J-M, Rhee S-W (2013) Electrocatalytic carbonaceous materials for counter electrodes in dye-sensitized solar cells. J Mater Chem A 1:3202–3215. doi:10.1039/c2ta00360k 2. Hsu Y-H, Lai C-C, Peng Y-T, Lo C-T (2015) Preparation and characterization of interconnected carbon nanofibers. Text Res J 85(1):3–12. doi:10.1177/ 0040517514542142 3. Kim S, Kim M, Kim YK, Hwang S-H, Lim SK (2014) Core–shell-structured carbon nanofiber-titanate nanotubes with enhanced photocatalytic activity. Appl Catal B: Environ 148-9:170–176. doi:10.1016/j.apcatb.2013.10.051 4. Mu J, Shao C, Guo Z, Zhang Z, Zhang M, Zhang P, Chen B, Liu Y (2011) High photocatalytic activity of ZnO-carbon nanofiber heteroarchitectures. ACS Appl Mater Interfaces 3:590–596. doi:10.1021/am101171a 5. Yun YS, Im C, Park HH, Hwang I, Tak Y, Jin H-J (2013) Hierarchically porous carbon nanofibers containing numerous heteroatoms for supercapacitors. J Power Sources 234:285–291. doi:10.1016/j.jpowsour.2013.01.169 6. Xu Q, Yu X, Liang Q, Bai Y, Huang Z-H, Kang F (2015) Nitrogen-doped hollow activated carbon nanofibers as high performance supercapacitor electrodes. J Electroanal Chem 739:84–88. doi:10.1016/j.jelechem.2014.12.027 7. Tran C, Kalra V (2013) Fabrication of porous carbon nanofibers with adjustable pore sizes as electrodes for supercapacitors. J Power Sources 235: 289–296. doi:10.1016/j.jpowsour.2013.01.080 8. Wu Y, Gao M, Li X, Liu Y, Pan H (2014) Preparation of mesohollow and microporous carbon nanofiber and its application in cathode material for lithium–sulfur batteries. J Alloys Comp 608:220–228. doi:10.1016/j. jallcom.2014.04.073 9. Liu B, Yu Y, Chang J, Yang X, Wu D, Yang X (2011) An enhanced stable- structure core-shell coaxial carbon nanofiber web as a direct anode material for lithium-based batteries. Electrochem Commun 13:558–561 10. Chen Y, Lu Z, Zhou L, Mai YW, Huang H (2012) Triple-coaxial electrospun amorphous carbon nanotubes with hollow graphitic carbon nanospheres for high-performance Li ion batteries. Energy Environ Sci 5:7898–7902. doi:10.1039/c2ee22085g 11. Park S-H, Jung H-R, Lee W-J (2013) Hollow activated carbon nanofibers prepared by electrospinning as counter electrodes for dye-sensitized solar cells. Electrochim Acta 102:423–428. doi:10.1016/j.electacta.2013.04.044 12. Sebastián D, Baglio V, Girolamo M, Moliner R, Lázaro MJ, Aricò AS (2014) Carbon nanofiber-based counter electrodes for lowcost dye-sensitized solar cells. J Power Sources 250:242–249. doi:10.1016/j.jpowsour.2013.10.142 13. El-Deen AG, Barakat NAM, Khalild KA, Kim HY (2014) Hollow carbon nanofibers as an effective electrode for brackish water desalination using the capacitive deionization process. New J Chem 38:198–205. doi:10.1039/c3nj00576c 14. Wang J, Liu Q, Gao Y, Wang Y, Guo L, Jiang G (2015) High-throughput and rapid screening of low-mass hazardous compounds in complex samples. Anal Chem 87:6931–6936. doi:10.1021/acs.analchem.5b01550 15. Kim C, Jeong YI, Ngoc BTN, Yang KS, Kojima M, Kim YA, Endo M, Lee JW (2007) Synthesis and characterization of porous carbon nanofibers with hollow cores through the thermal treatment of electrospun copolymeric nanofiber webs. Small 3:91–95. doi:10.1002/smll.200600243 16. Khajavi R, Abbasipour M (2012) Electrospinning as a versatile method for fabricating coreshell, hollow and porous nanofibers. Scientia Iranica F 19(6): 2029–2034. doi:10.1016/j.scient.2012.10.037 17. Wu M, Wang Q, Li K, Wu Y, Liu H (2012) Optimization of stabilization conditions for electrospun polyacrylonitrile nanofiber. Polym Degrad Stab 97:1511–1519. doi:10.1016/j.polymdegradstab.2012.05.001 18. Deurbergue A, Oberlin A (1991) Stabilization and carbonization of PAN- based carbon fibers as related to mechanical properties. Carbon 29:621–628 19. Zussman E, Chen X, Ding W, Calabri L, Dikin DA, Quintana JP, Ruoff RS (2005) Mechanical and structural characterization of electrospun PAN- derived carbon nanofibers. Carbon 43:2175–2185 20. Rahaman MSA, Ismail AF, Mustafa A (2007) A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab 92:1421–1432. doi:10.1016/j. polymdegradstab.2007.03.023 21. Miyauchi M, Miao J, Simmons TJ, Lee J-W, Doherty TV, Dordick JS, Linhardt RJ (2010) Conductive cable fibers with insulating surface prepared by coaxial electrospinning of multiwalled nanotubes and cellulose. Biomacromolecules 11:2440–2445. doi:10.1021/bm1006129 22. Miao J, Miyauchi M, Dordick JS, Linhardt RJ (2012) Preparation and characterization of electrospun core sheath nanofibers from multi-walled carbon nanotubes and poly(vinyl pyrrolidone). J Nanosci Nanotechnol 12: 2387–2393. doi:10.1166/jnn.2012.5710 23. Hong CK, Yang KS, Oh SH, Ahn J-H, Cho B-H, Nah C (2008) Effect of blend composition on the morphology development of electrospunfibres based on PAN/PMMA blends. Polym Int 57:1357–1362. doi:10.1002/pi.2481 24. Li L, Jiang Z, Li M, Li R, Fang T (2014) Hierarchically structured PMMA fibers fabricated by electrospinning. RSC Adv 4:52973–52985. doi:10.1039/c4ra05385k 25. Zander NE, Strawhecker KE, Orlicki JA, Rawlett AM, Beebe TP Jr (2011) Coaxial electrospun poly(methyl methacrylate)-polyacrylonitrile nanofibers: atomic force microscopy and compositional characterization. J Phys Chem B 115:12441–12447. doi:10.1021/jp205577r 26. Minella AB, Pohl D, Täschner C, Erni R, Ummethala R, Rümmeli MH, Schultz L, Rellinghaus B (2014) Silicon carbide embedded in carbon nanofibres: structure and band gap determination. Phys Chem Chem Phys 16:24437–24442. doi:10.1039/c4cp02975e 27. Wang Y, Serrano S, S-Aviles JJ (2002) Conductivity measurement of electrospun PAN-based carbon nanofiber. J Mater Sci Letters 21:1055–1057 28. Bedi JS, Lester DW, Fang YX, Turner JFC, Zhou J, Alfadul SM, Perry C, Chen Q (2013) Electrospinning of poly(methyl methacrylate) nanofibers in a pump-free process. J Polym Eng 33(5):453–461. doi:10.1515/polyeng-2012-0096 29. Zhang C, Yuan X, Wu L, Han Y, Sheng J (2005) Study on morphology of electrospun poly(vinyl alcohol) mats. Eur Polym J 41(3):423–432. doi:10.1016/j.eurpolymj.2004.10.027 30. Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnol 7(3):216–223 31. Yuan X, Zhang Y, Dong C, Sheng J (2004) Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polym Int 53(11):1704–1710. doi:10.1002/pi.1538 32. Jalili R, Morshed M, Ravandi SAH (2006) Fundamental parameters affecting electrospinning of PAN nanofibers as uniaxially aligned fibers. J Appl Polym Sci 101:4350–4357. doi:10.1002/app.24290 33. Deitzel JM, Kleinmeyer J, Harris D, Beck TNC (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261–272 34. Zuo W, Zhu M, Yang W, Yu H, Chen Y, Zhang Y (2005) Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polym Eng Sci 45(5):704–709. doi:10.1002/pen.20304 35. Enz E, Baumeister U, Lagerwall J (2009) Coaxial electrospinning of liquid crystal-containing poly(vinylpyrrolidone) microfibers. J Org Chem 5(58):1–8. doi:10.3762/bjoc.5.58 36. Li D, Xia Y (2004) Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 5:933–938. doi:10.1021/nl049590f 37. Pillay V, Dott C, Choonara YE, Tyagi C, Tomar L, Kumar P, du Toit LC, Ndesendo VMK (2013) A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J Nanomater:1–22. doi:10.1155/2013/789289 38. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53: 1126–1130. doi:10.1063/1.1674108 39. Vogel W, Hosemann R (1979) The paracrstalline nature of pyrolytic carbons. Carbon 17:41–48 40. Qie L, Chen W, Xiong X, Hu C, Zou F, Hu P, Huang Y (2015) Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv Sci 2:1500195. doi:10.1002/advs.201500195 41. Sebastian D, Ruiz AG, Suelves I, Moliner R, Lazaro MJ (2013) On the importance of the structure in the electrical conductivity of fishbone carbon nanofibers. J Mater Sci 48:1423–1435. doi:10.1007/s10853-012-6893-1 42. Maitra T, Sharma S, Srivastava A, Cho Y-K, Madou M, Sharma A (2012) Improved graphitization and electrical conductivity of suspended carbon nanofibers derived from carbon nanotube/polyacrylonitrile composites by directed electrospinning. Carbon 50:1753–1761. doi:10.1016/j.carbon.2011.12.021

PDF Image | carbon nanofibers obtained from coaxial electrospinning

PDF Search Title:

carbon nanofibers obtained from coaxial electrospinning

Original File Name Searched:

s11671-016-1416-7.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)