CATHODE ACTIVE MATERIAL-COATED DISCRETE GRAPHENE SHEETS FOR LITHIUM

PDF Publication Title:

CATHODE ACTIVE MATERIAL-COATED DISCRETE GRAPHENE SHEETS FOR LITHIUM ( cathode-active-material-coated-discrete-graphene-sheets-for- )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 012

US9,203,084B2 1. 2 CATHODE ACTIVE MATERAL-COATED DISCRETE GRAPHENE SHEETS FOR LITHIUM BATTERIESAND PROCESS FOR PRODUCING SAME FIELD OF THE INVENTION The presentinvention relatesgeneralytothefieldof lithiummetalorlithiumionbateriesand,inparticular,toa graphene-enhancedcathodeofalithiummetalbatery,10 lithium-sulfurbatery,orlithium-ionbatery. aconductiveaditiveforthecathodeofalithiumbatery. Theseincludecarbonnano-tubes(CNTs),vapor-growncar bonnano-fibers(VG-CNFs),andsimplecarboncoatingon thesurfaceofcathodeactivematerialparticles.Theresulthas notbeensatisfactoryandhence,asoftoday,carbonblackand artificialgraphiteparticlesarepracticalytheonlytwotypes ofcathodeconductiveaditiveswidelyusedinlithiumion bateryindustry.Thereasonsarebeyondjusttheobvioushigh costsofbothCNTsandVG-CNFs.Thedificultyindisentan glingCNTsandVG-CNFsanduniformlydispersingthemin aliquidorSolidmediumhasbeenanimpedimenttothemore widespreadutilizationoftheseexpensivematerialsasacon ductiveaditive.Aditionaly,theproductionofbothCNTs BACKGROUND Duetoextremelypoorelectricalconductivityofalcath-15andVG-CNFs normallyrequiretheuseofasignificant ode(positiveelectrode)activematerialsinalithium-ion, lithiummetal,orlithium-sulfurcel,aconductiveadditive (e.g.carbonblack,finegraphiteparticles,expandedgraphite particles,ortheircombinations),typicalyintheamountof 5%-20%,mustbeaddedintotheelectrode.Inthecaseofa lithium-sulfurcel,acarbonamountashighas50%byweight isusedasaconductiveSupportforSulfurinthecathode. However,theconductiveadditiveisnotanelectrodeactive material(i.e.itisnotcapableofreversiblystoringlithium ions).Theuseofanon-activematerialmeansthattherelative25 proportionofanelectrodeactivematerial,suchasLiFePO, isreducedordiluted.Forinstance,theincorporationof5%by weightofPVDF asabinderand5% ofcarbonblackasa conductive additive in a cathode would mean thatthe maxi mumamountofthecathodeactivematerial(e.g.,lithium30 cobaltoxide)isonly90%,efectivelyreducingthetotal lithiumionstoragecapacity.Sincethespecificcapacitiesof themorecommonlyusedcathodeactivematerialsarealready verylow(140-170mAh/g),thisproblemisfurtheraggravated ifasignificantamountofnon-activematerialsisusedtodilute 35 theconcentrationoftheactivematerial. State-of-the-artcarbonblack(CB)materials,asaconduc tiveaditive,haveseveraldrawbacks: (1)CBSaretypicalyavailableintheformofaggregatesof multipleprimaryparticlesthataretypicalysphericalin40 shape.Duetothisgeometricfeature(largestdimension-to amountoftransitionmetalnanoparticlesasacatalyst.Itis dificulttoremoveandimpossibletototalyremovethese transitionmetalparticles,whichcanhaveadverseefecton thecyclingstabilityofalithiummetal. Asforthelesexpensivecarboncoating,beingconsidered foruseinlithiumironphosphate,theconductivityofthe carboncoating(typicalyobtainedbyconvertingaprecursor SuchasSugarorresinviapyrolyzation)isrelativelylow.It wouldtakeagraphitizationtreatmenttorenderthecarbon coatingmoreconductive,butthistreatmentrequiresatem peraturehigherthan2,000°C.,whichwoulddegradethe underlyingcathodeactivematerial(e.g.,LiFePO). Asanalternativeapproach,Ding,etalinvestigatedthe electrochemicalbehaviorofLiFePO/graphenecomposites Y.Ding,etal.“Preparationofnano-structuredLiFePO/ graphenecompositesbyco-precipitationmethod.”Electro chemistryCommunications12(2010)10-13.Theco-pre cipitationmethodleadstotheformationofLiFePOnano particlescoatedonbothprimarySurfacesofgraphenenano shets. The cathode is then prepared by stacking these LiFePO-coatedgrapheneshetstogether.Thisapproachhas severalmajordrawbacks: (1)Withthetwoprimarysurfacesofagrapheneshet attachedwithLiFePO nano-particles,theresulting electrodeentailsmany insulator-to-insulatorcontacts Smalestdimensionratiooraspectratio~1)andthenotion betweentwoadjoiningcoatedshetsinastack. thatCBSareaminorityphasedispersedasdiscretepar (2)Onlylesthan30% ofthegraphenesurfaceareais ticlesinanelectricalyinsulatingmatrix(e.g.lithium coveredbyLiFePO particlesoneitherside.Thisisa cobaltoxideandlithiumironphosphate),alargeamountof45 relativelylowproportionofthecathodeactivematerial. CBsisrequiredtoreachapercolationthresholdwherethe (3)The LiFePO particlesareeasilydetachedfrom CBparticlesarecombinedtoforma3-Dnetworkofelec grapheneshetsduringhandlingandelectrodeproduc tron-conductingpaths. tion. (2)CBsthemselveshavearelativelylowelectricalconduc (4)Wehavefoundthatthenanoparticle-atachedgraphene tivityand,hence,theresultingelectroderemainstobeof50 relatively low conductivity even when the percolation thresholdisreached.A relativelyhighproportionofCBS (farbeyondthepercolationthreshold)mustbeincorpo ratedinthecathodetomaketheresultingcompositeelec trodereasonablyconducting. Clearly,anurgentneedexistsforamoreefectiveelectri shetsaspreparedbytheco-precipitationmethodare not amenable to fabrication of cathodes with current electrodecoatingequipment.Inparticular,thesepar ticle-atachedgrapheneshetscouldnotbecompacted intoadensestatewithahighmassperunitelectrode volume.Inotherwords,thecathodetapdensityisrela tivelylow.Thisisaveryseriousisuesincealofthe commonly used cathode active materials, including LiFePO, already have a very low specific capacity (mAh/g),andnotbeingabletopackalargemassofa cathodeactivematerialintoagivenelectrodeVolume wouldmeananexcessivelylowoveralcapacityatthe cathodeside.(Itmaybenotedthatthetypicalspecific capacity(140-170mAh/g)ofacathodeactivematerialis alreadymuchlowerthanthat(330-360mAh/g)ofan anode active material. Such an imbalance has been a calyconductiveaditivematerial.Preferably,thiselectri calyconductiveaditiveisalsoofhighthermalconductivity. Suchathermallyconductiveaditivewouldbecapableof disipatingtheheatgenerated from theelectrochemical operationoftheLi-ionbatery,therebyincreasingthereli abilityofthebateryanddecreasingthelikelihodthatthe baterywilsuferfromthermalrunawayandrupture.Witha highelectricalconductivity,therewouldbenoneedtoadda highproportionofconductiveaditives. 55 60 65 Therehavebeenseveralattemptstouseothercarbonnano majorisueinthedesignandfabricationoflithiumion materialsthancarbonblack(CB)oracetyleneblack(AB)as bateries).

PDF Image | CATHODE ACTIVE MATERIAL-COATED DISCRETE GRAPHENE SHEETS FOR LITHIUM

PDF Search Title:

CATHODE ACTIVE MATERIAL-COATED DISCRETE GRAPHENE SHEETS FOR LITHIUM

Original File Name Searched:

US9203084.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)