CATHODE ACTIVE MATERIAL-COATED DISCRETE GRAPHENE SHEETS FOR LITHIUM

PDF Publication Title:

CATHODE ACTIVE MATERIAL-COATED DISCRETE GRAPHENE SHEETS FOR LITHIUM ( cathode-active-material-coated-discrete-graphene-sheets-for- )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 015

US9,203,084B2 78 aditive(suchascarbonblack)whichareembracedby grapheneshetstoformamoreorlessphericalparticle. Furtheralternatively,theprocesscanfurthercomprisea stepofmixingmultiplepiecesofcathodeactivematerial coatedgraphenematerialshetsandaresinbinderand/ora conductivefilertoformacathodelayeronacathodecurent collector. BRIEF DESCRIPTION OF THE DRAWINGS FIG.1Schematicofaprocessforproducingcathodeactive material-coatedgrapheneshets. FIG.2SEMimageofagraphene-enhancedcathodepar ticulate(secondaryparticle)accordingtoapreferredembodi mentofthepresentinvention FIG.3SEMimageofagraphene-enhancedanodeparticu late(secondaryparticle)forcomparisonpurpose. FIG.4Thecathodeactivematerialcoatingvolumefraction ofcoatedgrapheneshetsplotedasafunctionoftheactive material coating thickness for various graphene platelet thicknessvalues. 10 15 lithiumsecondarybaterycanbecylindrical,square,button like,etc.Thepresentinventionisnotlimitedtoanybatery shapeorconfiguration. Forconvenience,we wiluselithiumironphosphate (LFP),vanadiumoxide(V.O.),sulfur(S),andcoperphtha locyanine(CuPe)asilustrativeexamplesofthecathode activematerial.Thisshouldnotbeconstruedaslimitingthe Scopeoftheinvention. AsilustratedinFIGS.5(A)and5(B),alithium-ionbatery celistypicalycomposedofananodecurentcolector(e.g. Cufoil),ananodeelectrode(anodeactivemateriallayer),a porousseparatorand/oranelectrolytecomponent,acathode electrode(cathodeactivemateriallayer),andacathodecur rentcolector(e.g.Alfoil).Inamorecommonlyusedcel configuration(FIG.5(B),theanodelayeriscomposedof particlesofananodeactivematerial(e.g.graphiteorSi),a conductiveaditive(e.g.carbonblackparticles),andaresin binder(e.g.SBRorPVDF).Thecathodelayeriscomposedof particlesofacathodeactivematerial(e.g.LFPparticles),a conductiveaditive(e.g.carbonblackparticles),andaresin binder(e.g.PVDF).Boththeanodeandthecathodelayersare typicaly100-300umthicktogiverisetoasuficientamount ofcurentperunitelectrodearea.Thisthicknessrangeisan industry-acceptedconstraintunderwhichabaterydesigner mustwork.Thisconstraintisduetoseveralreasons:(a)the existingbateryelectrodecoatingmachinesarenotequipped tocoatexcesivelythinorexcesivelythickelectrodelayers: (b)athinerlayerispreferedbasedontheconsiderationof reducedlithiumiondifusionpathlengths;but,toothina layer(e.g.<100um)doesnotcontainaSuficientamountof anactivelithiumstoragematerial(hence,insuficientcurent output);and(c)alnon-activemateriallayersinabaterycel (e.g.curentcolectorsandseparator)mustbekepttoamini muminordertoobtainaminimumoverheadweightanda maximumlithiumstoragecapabilityand,hence,amaximized energydensity(Wk/kgorWh/Lofcel). FIG.5(A)schematicofapriorartlithium-ionbaterycel composedofananodecurentcolector,ananodeelectrode (e.g.thinSicoatinglayer),aporousseparator,acathode25 electrode(e.g.Sulfurlayer),andacathodecurentcolector, (B)theelectrodelayeriscomposedofdiscreteparticlesofan activematerial(e.g.graphiteortinoxideparticlesinthe anodelayerorLiCoO inthecathodelayer). FIG.6(A)apriorartcathodecontainingathinfilmS30 coatedonashetofAlfoilcurentcolector;(B)schematicof anexampleofaS-coatedgrapheneshetofthepresentinven tion. FIG.7Cyclingbehaviorsofthrelithiumbaterieshaving agraphene-SupportedV2O5coating,agraphene/V2O5nano35 particlemixture(co-precipitatedV2O5withGO),andacar bonnanofiber(CNF)-supportedVOscoating,respectively, Inalescommonlyusedcelconfiguration,asilustratedin asacathodeactivematerial. FIG.8Cyclingbehaviorsofalithium-ionbateryhavinga graphene-SupportedLFPcoatingcathodeofthepresent40 invention,thoseofabaterycontainingaLFP-graphenesheet mixturecathode,andthoseofabaterycontainingacarbon coatedLFPcomposite-basedcathode. FIG.5(A),eithertheanodeactivematerial(e.g.Si)orthe cathodeactivematerial(e.g.S)isdepositedinathinfilmform directlyontoacurentcolector.Suchasasheetofcopperfoil orAlfoil.However,suchathinfilmstructurewithan extremely small thicknes-direction dimension (typicaly muchsmallerthan500nm,oftennecesarilythinerthan100 FIG.9RagoneplotsofthreLiScelshavingaS-coated um)impliesthatonlyasmallamountofactivematerialcanbe graphenebasedcathodewithaScoatingthicknessof20nm,45 65nm,and125nm,respectively. FIG.10Cyclingbehaviorsofalithiummetalbateryhav ingagraphene-supportedCuPeorganiccoating(25nm)cath odeofthepresentinvention,thoseofabaterycontaininga graphene-SupportedCuPecoating(120nm)basedcathode,50 andthoseofabaterycontainingaCuPe-carbonblackcom posite-basedcathode. incorporatedinanelectrode(giventhesameelectrodeor curentcolectorSurfacearea),providingalowtotallithium storagecapacityandlowlithiumstoragecapacityperunit electrodesurfacearea.Suchathinfilmmusthaveathickness lesthan100nmtobemoreresistanttocycling-induced cracking(fortheanode)ortofacilitateafulutilizationofthe cathodeactivematerial.Suchaconstraintfurtherdiminishes thetotallithiumstoragecapacityandthelithiumstorage capacityperunitelectrodesurfacearea.Suchathin-film bateryhasverylimitedscopeofaplication.(Ontheother hand,aSilayerthickerthan100nmhasbeenfoundtoexhibit poorcrackingresistanceduringbaterycharge/discharge cycles.Ittakesbutafewcyclestogetfragmented).ASulfur layerthickerthan100nmdoesnotallowlithiumionstofuly penetrateandreachfulbodyoftheSlayer,resultinginapoor sulfurutilizationrate.A desirableelectrodethicknessisat least100um,withindividualactivematerialcoatingorpar ticlehavingadimensiondesirablylesthan100nm.These thin-filmelectrodes(withathickness<100nm)directly depositedonacurentcolectorfalshortoftherequired thicknessbythre(3)ordersofmagnitude.Asafurtherprob lem,alofthecathodeactivematerialsarenotconductiveto bothelectronsandlithiumions.Alargelayerthickness DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS 55 Thisinventionisdirectedatgraphene-enabledcathode activematerials,aprocessforproducingsuchacathode activematerial,acathode(positiveelectrode)containingSuch acathodeactivematerial,andalithiumbaterycontaining60 suchacathode.Thislithiumbaterycanbeaprimarybatery, butispreferablyasecondarybateryselectedfromalithium ionbatery,alithiummetalsecondarybatery(e.g.using lithiummetalasananodeactivematerial),oralithium-sulfur batery.Thebateryisbasedonanon-aqueouselectrolyte,a65 polymergelelectrolyte,anionicliquidelectrolyte,aquasi solidelectrolyte,orasolid-stateelectrolyte.Theshapeofa

PDF Image | CATHODE ACTIVE MATERIAL-COATED DISCRETE GRAPHENE SHEETS FOR LITHIUM

PDF Search Title:

CATHODE ACTIVE MATERIAL-COATED DISCRETE GRAPHENE SHEETS FOR LITHIUM

Original File Name Searched:

US9203084.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)