logo

CATHODE ACTIVE MATERIAL-COATED DISCRETE GRAPHENE SHEETS FOR LITHIUM

PDF Publication Title:

CATHODE ACTIVE MATERIAL-COATED DISCRETE GRAPHENE SHEETS FOR LITHIUM ( cathode-active-material-coated-discrete-graphene-sheets-for- )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 016

impliesanexcessivelyhighinternalresistanceandapoor activematerialutilizationrate. Inotherwords,thereareseveralconflictingfactorsthat mustbeconsideredconcurrentlywhenitcomestothedesign andselectionofacathodeoranodeactivematerialintermsof 5 materialtype,shape,size,porosity,andelectrodelayerthick nes.Thusfar,therehasbeennoefectivesolutionofferedby anypriorartteachingtotheseoftenconflictingproblems.We havesolvedthesechallengingisuesthathavetroubledbat terydesignersandelectrochemistsalikeformorethan3010 yearsbydevelopingthecathodeactivematerial-coated grapheneshetsashereindisclosed. Anembodimentofthepresentinventionisagraphene enhancedcathodeactivematerial,whichisacathodeactive15 material-coatedgrapheneshet.Insuchacoatedshet,the graphenematerialisinanamountfrom0.1%to99.5%by weightandthecathodeactivematerialisinanamountofat least0.5%byweight(typicalyandpreferably>60%,more typicalyandpreferably>80%,andmosttypicalyandpref erably>90%),albasedonthetotalweightofthegraphene material and the cathode active material combined. These piecesofcoatedshetshaveatypicallength/widthfrom100 nmto10um,moretypicaly500nmto5um(butmost preferably<3um).Typicaly,atleast60%ofthesurfacearea25 ofaprimarySurfaceoftheSupportinggrapheneshetis coveredbyathinlayerofthedesiredactivematerial(e.g.Sor MoS).Thissurfacecoverageispreferably>80%,morepref erably>90%,andmostpreferably>99%.Thethicknesofthe cathodeactivematerialcoatinglayerispreferablyfrom2nm30 to100nm,andmorepreferablyfrom5nmto20nm.Thereare significantandnon-trivialreasonsforspecifyingthesepre fereddimensions,furtherexplainedbelow: AsilustratedinFIG.6(A),apriorartcathodeisathinfilm35 sulfurorlithiumpolysulfidecoatedonashetofAlfoil curentcolector.ThethinestavailableAlfoilis10-20um thickandthemaximumScoatingfilmthicknessis100nm, beyondwhichtheSlayerwouldnotallowforahighsulfur utilizationrate.ThisproblemisnotjustlimitedtoS;rather,it40 isobservedforallactivematerialsinathinfilmform.With Suchaconfiguration(e.g.10umthickAlfoiland100nm 10 baterycelleadingtoahighratecapability.Thesefeatures havenotbeenposiblewithanypriorartcathodeactive materialsandelectrodes. FIG. 4 shows the volume fraction of the S coating in S-coatedgrapheneshetsplotedasafunctionoftheScoat ingthicknessforvariousgrapheneplateletthicknessvalues. Thischartindicatesthat,withasingle-layergraphenesheet (<0.5nmthick),aScoatingthicknessasthinas1nmimplies aSvolumefraction>66%.Onecanimaginethatsuchan ultra-thinScoatingwouldenableextremelyeasytransportof boththeelectronsandlithiumionswithultra-lowresistance, enablingultra-fastbaterychargeanddischarge.A Sulfur coatingthicknessof20nmwouldmeanaSVolumeorweight fraction>96%,leavingbehindverylowpercentageofnon activematerial.Withamulti-layergrapheneplateletasa SupportingSubstrate(e.g.5nm),aScoatingthicknessof8nm issuficienttoachieveanactivematerialpercentage>60%. OnemightarguethatonecouldeasilyachieveaSulfurloading higherthan70%,80%,oreven90%bysimplymixingsulfur withacarbonmateriallesthan30%,20%,or10%.However, inSuchamixture,asignificantproportionoftheSulfuris presentinlargeZonesordomainssignificantlylargerthan100 nminsize.Assuch,ahighpercentageofsulfurwouldnotbe readilyacesibletolithiumionsandthesulfurutilization rateislow.InaconventionalLi-Scel,acarbonloadingas highas50%isverycommon.Evenwithsuchahighpercent ageofinactivematerial,theSulfurutilizationrateremains verylow.Thisiswhyoneoftenobservesasulfurcathode specificcapacityof<600mAh/geventhoughthetheoretical capacityofsulfuris1,675mAh/g.(With50%carbonand 50%sulfur,thecompositesulfurisexpectedtogiverisetoa cathodespecificcapacityof1,675x0.5–837.5mAh/g,based onthecompositeweight,providedthat100%ofthesulfuris fulyutilized.But,theactualcapacityisnormallysignifi cantlylowerthanthis.Anactualcapacityof600mAh/g would mean aSulfurutilizationrateof600/837.5=71.6%. Thislowsulfurutilizationratehasbeenamostseriousprob lemassociatedwithLi Sbateries). Wehavefurtherobservedthatthepresentlyinventedcath odeactivematerial-coatedgrapheneshetscanbecombined, withorwithoutaditionalneatgrapheneshetsand/orother conductiveaditive,intosecondaryparticles,typicaly1-20 US9,203,084B2 thickSfilm),thevolumefractionofS(theactivematerial umindiameter.Withthelength/widthofthesupporting responsibleforstoringordischarginglithium)isonly100/ 100+10,000=1/101<1%.WithanAlphysicaldensityof2.745 g/cmandSdensityof2.0g/cm,thisimpliesaSweight fractionlesthan1%.Inotherwords,morethan99%by weightorbyVolumeofthisconfigurationisaluminum,which isnotacathodeactivematerialincapableofreversiblystoring lithiumionsinabaterycel.Thisisanextremelyundesirable50 andnon-eficientbaterydesign. Bycontrast,referingtoFIG.6(B)asanilustrative example, the Sulfur coating layer is 20 nm thick and the Supportinggrapheneshetis1nmthick,implyingacathode activematerialpercentageof20/21=95%byvolume.Witha55 graphenephysicaldensityof2.2g/cmandSdensityof2.0 g/cm,thisimpliesasulfurweightfractionofaproximately 94.7%,havingaveryminimalnon-activematerial.TheSup portinggrapheneshetplaystheroleofaconductingfiler, andeverypieceofsulfurisguaranteedtobeindirectphysical60 contactwithanunderlying,highlyconductinggraphene shet.Graphenehasanelectricalconductivityhigherthanthe conductivityofcarbonblackbyatleast3ordersofmagni tude.Duringbateryoperations,bothelectronsandlithium ionsonlyhavetotraveltoamaximumpathlengthof20nm,65 resultinginverylowinternalresistance,andSuchashort transportpathalsoenablesfastchargeandrechargeofa grapheneshetsbeingintherangeof300nmto5um,the secondaryparticletypicalyhasadiameterlesthan10um. WithaSupportinggrapheneshetlength<3um,theresulting secondaryparticlehasatypicaldiameter<5um,whichis idealforuseasacathodeactivematerialintermsofelectrode productionease,electrodetapdensity,ratecapability,and cyclingstabilityofresultinglithiumbateries.Theseobser Vationsmeanthatthepresentlyinventedcathodeactivemate rial-coatedgrapheneshetsareidealcathodestructures. Inanembodimentofthepresentinvention,theprocessfor producingSuchacathode-coatedshetcomprises(a)provid ingacontinuousfilmofagraphenematerialintoadeposition Zone;(b)introducingvapororatomsofaprecursorcathode activematerialintothedepositionZone,allowingthevaporor atomstodepositontoaSurfaceofthegraphenematerialfilm toformacoatedfilmofacathodeactivematerial-coated graphenematerial;and(c)mechanicallybreakingthisfilm intomultiplepiecesofcathodeactivematerial-coated grapheneshets.Thisprocessmayfurtherincludeastep(d) ofcombiningmultiplepiecesofcathodeactivematerial coatedgrapheneshets,alongwithanoptionalbinderand/or anoptionalcarbon/graphitematerial,toformmultiplesec ondaryparticlesthatarethencombinedtoformacathode electrode.Step(d)mayentailcombiningmultiplepiecesof

PDF Image | CATHODE ACTIVE MATERIAL-COATED DISCRETE GRAPHENE SHEETS FOR LITHIUM

cathode-active-material-coated-discrete-graphene-sheets-for--016

PDF Search Title:

CATHODE ACTIVE MATERIAL-COATED DISCRETE GRAPHENE SHEETS FOR LITHIUM

Original File Name Searched:

US9203084.pdf

DIY PDF Search: Google It | Yahoo | Bing

Sulfur Deposition on Carbon Nanofibers using Supercritical CO2 Sulfur Deposition on Carbon Nanofibers using Supercritical CO2. Gamma sulfur also known as mother of pearl sulfur and nacreous sulfur... More Info

CO2 Organic Rankine Cycle Experimenter Platform The supercritical CO2 phase change system is both a heat pump and organic rankine cycle which can be used for those purposes and as a supercritical extractor for advanced subcritical and supercritical extraction technology. Uses include producing nanoparticles, precious metal CO2 extraction, lithium battery recycling, and other applications... More Info

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP